提示:文
0.论文信息
题目:Semi-Supervised Multi-View Deep Discriminant Representation Learning
期刊: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)
关键字:多视图学习、多视图表示学习、孪生网络(Siamese Network)、对抗学习(Adversarial Training)、一致性(Consensus)、互补性(Complementarity)、半监督学习、密度峰值聚类(Density Peak Clustering)。
1. Introduction
多视图学习及多视图表示学习的研究意义,重要性与必要性,这部分介绍省略……
1.1多视图数据的基本特性
T-PAMI这样的期刊愿意接收通用的方法。要想提出通用的方法,就不能仅仅是改进某一种已有的方法,而是需要从数据的本质出发提出新的方法。因此这一部分先介绍多视图数据的基本特性。
多视图数据有两个优势和一个劣势。两个优势是多视图数据具有一致性Consensus和互补性Complementarity。劣势是多视图数据中存在冗余。
1.1.1多视图数据的两个优势——一致性和互补性。
首先说多视图数据的一致性。由于多视图数据不同视图之间存在天然的对应关系(Pairwise Information),且对于一条多视图Sample来说,多个视图描述的是同一个Object,因此多视图数据中存在一致性。这个一致性可以从分类器和信息两个角度去理解。从分类器的角度来说,由于多个视图描述的是同一个Object,一个Object只能够属于一个类别,因此如果从多个视图学习到多个分类器,那么对于同一条多视图样本来说,不同分类器给出的分类结果应该是一致的。从特征、表示、信息的角度来说,从不同视图中学习到的特征或者信息有一部分是共享的、相同的,或者说是语义关联的(本论文中称为Shared)。
其次,多视图数据还存在互补性