说明:本文仅供学习交流,转载请标明出处,欢迎转载!
在前面的博文中,我们已经介绍了数据结构之二分查找树的相关知识,二分查找的提出主要是为了提高数据的查找效率。同一个元素集合可以对应不同的二分查找树BST,二分查找树的形态依赖于元素的插入顺序。同时我们也已经知道,如果将一个有序的数据集依次插入到二查找树中,此时二分查找树将退化为线性表,此时查找的时间复杂度为o(n)。为了防止这一问题的出现,便有了平衡二叉树的存在价值。平衡二叉树从根本上将是为了防止出现斜二叉树的出现,从而进一步提高元素的查找效率,保证元素查找的时间复杂度为o(logn),显然,平衡二叉树是二分查找树的一种负责任的形态,因为他比较公平,左右皆平等。
说明:平衡二叉树是一个大的范围,并不仅仅代表AVL树,因为树的平衡与否,并没有一个绝对的测量标准。“平衡”的大致意义是:没有任何一个结点过深(深度过大),不同的平衡条件则对应不同的树的类型,也表现出不同的效率。平衡二叉树的种类有很多,如:AVL-tree、RB-tree、AA-tree。
基本定义
高度与深度的区别
结点深度(depth)是指从root到结点n路径上边的条数,结点高度(height)是指从结点n向下到某个叶子结点最长路径中边的条数。树的深度指的是所有叶子结点深度中的最大值,树的高度指的是根结点的高度。从上面的定义可以看出,深度是从根结点开始自顶向下逐层累加,而高度则是从叶子结点开始自底向上累加。
AVL树(是平衡二叉树的一种)---->由Adelson-Velskii 和Landias在1962年提出。
AVL或者是一颗空的BST,或者是具有下列性质的BST:
(1)根结点的左子树和右子树的深度相差不超过1;
(2)根结点的左子树和右子树也是AVL树。
FAQ:假设树的跟结点为第0层,对于层数为n的AVL树,至少有多少个结点?
设f(n)表示层数为n的AVL至少含有的结点个数,则f(n)=f(n-1)+f(n-2),其中f(0)=1,f(1)=2,可以看出:
f(0)=1
f(1)=2
f(2)=1+2+1=4
f(3)=2+4+1=7
f(4)=4+7+1=12
f(5)=7+12+1=20
...
平衡因子
AVL树中结点的平衡因子表示该结点的左子树的深度减去右子树的深度,即depth(left)-depth(right)。
AVL的基本实现过程
在构造AVL树的过程中,每当插入一个结点时,首先检查是否因插入而破坏了树的平衡性,若是,则找出最小不平衡子树(即距离插入点最近的失去平衡的子树),在保存AVL树性质的前提下,调整各个结点直接的连接关系,并进行相应的旋转,使之称为新的AVL子树。
总结:失去平衡的结点只可能发生在从新插入点到root的路径上。
单旋转、双旋转
当在AVL中插入新的结点时,需要根据实际情况对AVL中的某些结点做单旋转或双旋转操作,单旋转表示做一次顺时针或逆时针的旋转操作,而双旋转则做两次单旋转操作(先顺时针后逆时针,或者先逆时针后顺时针),单旋转发生在LL型插入和RR型插入,而双旋转则发生在LR型插入和RL型插入。下面介绍下四种插入类型:
以下的失去平衡点都指的是离插入点最近的那个失去平衡的结点。
LL型:插入点位于失去平衡点的左孩子的左子树上;
RR型:插入点位于失去平衡点的右孩子的右子树上;
LR型:插入点位于失去平衡点的左孩子的右子树上;
RR型:插入点位于失去平衡点的右孩子的左子树上。
LL型插入的调整方法:将失去平衡点的左孩子提升,失去平衡点下降为提升点的右孩子,提升点的原右孩子作为失去平衡点的左孩子,具体如下图所示:
RR型插入的调整方法:将失去平衡点的右孩子提升,失去平衡点下降为提升点的左孩子,提升点的原左孩子作为失去平衡点的右孩子,具体如下图所示:
LR型插入的调整方法:先作RR型调整,再做LL型调整,分如下两个步骤进行:
(1)先将失去平衡点的左孩子的右孩子提升,失去平衡点的左孩子下降为提升点的左孩子,将提升点的原左孩子作为下降点的右孩子(此时发生了碰撞)。
(2)将失去平衡点作为新的下降点,该下降点作为提升点的右孩子,将提升点原右孩子作为该下降点的左孩子(此时发生了碰撞)。具体如下图所示:
RL型插入的调整方法:
(1)先将失去平衡点的右孩子的左孩子提升,失去平衡点的右孩子为提升点的右孩子,将提升点的原右孩子作为下降点的左孩子(此时发生了碰撞)。
(2)将失去平衡点作为新的下降点,该下降点作为提升点的左孩子,将提升点原左孩子作为该下降点的右孩子(此时发生了碰撞)。具体如下图所示:
举例
下面依次将值2,5,7,1,4,3,6依次插入到AVL中,具体过程如下:
参考资料:
[1]《数据结构(C++版)王红梅等》
[2]《数据结构与算法分析---C语言描述 原书第二版》
[3]《STL源码剖析 侯捷》