高度为H的AVL树最少节点数

本文介绍了如何通过递归公式计算不同高度AVL树的最少节点数,包括初始情况f(0)=0, f(1)=1, f(2)=2,以及递归公式f(h)=f(h-1)+f(h-2)+1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里,我们用f(h)代表高度为h的AVL树最少的节点数。

由此,我们知道f(0)=0, f(1)=1, f(2)=2。

当AVL树的高度为h,并且要保证此树满足AVL树的性质(即左右子树的高度相差不超过1)时,我们假设左子树的高度为h-1,则右子树的高度为h-2。

因此得到如下递归公式

f(h)=f(h-1)+f(h-2)+1。

因此可知f(3)=4, f(4)=7。。。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值