第三章:线性模型(3)——线性判别分析

3.4线性判别分析

基本概念
  • 线性判别分析
    • 是一种经典的线性学习方法。
    • 在二分类问题上由Fisher于1936年提出,也称为“Fisher判别分析”。
    • 假设各类样本的协方差矩阵相同且满秩。
数学公式与定义
  • 目标函数
    J = ∣ ω T ( μ 0 − μ 1 ) ∣ ω T Σ 0 ω + ω T Σ 1 ω J = \frac{|\omega^T(\mu_0 - \mu_1)|}{\sqrt{\omega^T\Sigma_0\omega + \omega^T\Sigma_1\omega}} J=ωTΣ0ω+ωTΣ1ω ωT(μ0μ1)
    其中μ0 和μ1是两类样本的中心点,Σ0 和 Σ1是两类样本的协方差矩阵。

  • 类内散度矩阵

    S w = Σ 0 + Σ 1 S_w = \Sigma_0 + \Sigma_1 Sw=Σ0+Σ1

    • 表示同一类内部样本点的离散程度。
  • 类间散度矩阵

    S b = ( μ 0 − μ 1 ) ( μ 0 − μ 1 ) T S_b = (\mu_0 - \mu_1)(\mu_0 - \mu_1)^T Sb=(μ0μ1)(μ0μ1)T

    • 表示不同类别中心点之间的距离。
  • 优化问题
    max ⁡ ω ω T S b ω ω T S w ω \max_{\omega} \frac{\omega^T S_b \omega}{\omega^T S_w \omega} ωmaxωTSwωωTSbω
    通过拉格朗日乘子法求解,得到:

    S b ω = λ S w ω S_b \omega = \lambda S_w \omega Sbω=λSwω

  • 解的形式

    ω = S w − 1 ( μ 0 − μ 1 ) \omega = S_w^{-1}(\mu_0 - \mu_1) ω=Sw1(μ0μ1)

    • 通过对Sw 进行奇异值分解来稳定数值解。
多分类推广
  • 全局散度矩阵
    S t = S b + S w S_t = S_b + S_w St=Sb+Sw

    • 其中 Sb 和 Sw 重新定义为多分类形式。
  • 优化目标
    max ⁡ W t r ( W T S b W ) t r ( W T S w W ) \max_{W} \frac{tr(W^T S_b W)}{tr(W^T S_w W)} Wmaxtr(WTSwW)tr(WTSbW)

    • 其中 W 是一个投影矩阵,将样本投影到N-1 维空间。
  • 闭式解
    S b W = λ S w W S_b W = \lambda S_w W SbW=λSwW

    • W 是由 S w − 1 S b S_w^{-1} S_b Sw1Sb的 N-1个最大广义特征值对应的特征向量组成的矩阵。
  • 26
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值