第十一周项目一(4)~~哈夫曼树

问题代码:

/*Copyright(c)2016,烟台大学计算机学院 
 *All right reserved. 
 *文件名称:哈夫曼树.cpp 
 *作者:李玲 
 *完成日期;2016年11月10日 
 *版本号;v1.0 
*问题描述: 哈夫曼树
*/  
 #include <stdio.h>  
#include <string.h>  
#include "btree.h"  
int main()  
{  
    int n=8,i;      //n表示初始字符串的个数  
    char str[]= {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'};  
    double fnum[]= {0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.1};  
    HTNode ht[M];  
    HCode hcd[N];  
    for (i=0; i<n; i++)  
    {  
        ht[i].data=str[i];  
        ht[i].weight=fnum[i];  
    }  
    printf("\n");  
    CreateHT(ht,n);  
    CreateHCode(ht,hcd,n);  
    DispHCode(ht,hcd,n);  
    printf("\n");  
    return 0;  
}  
#include <stdio.h>  
#include <malloc.h>  
#include "btree.h"  
void CreateHT(HTNode ht[],int n)  
{  
    int i,k,lnode,rnode;  
    double min1,min2;  
    for (i=0; i<2*n-1; i++)         //所有结点的相关域置初值-1  
        ht[i].parent=ht[i].lchild=ht[i].rchild=-1;  
    for (i=n; i<2*n-1; i++)         //构造哈夫曼树  
    {  
        min1=min2=32767;            //lnode和rnode为最小权重的两个结点位置  
        lnode=rnode=-1;  
        for (k=0; k<=i-1; k++)  
            if (ht[k].parent==-1)   //只在尚未构造二叉树的结点中查找  
            {  
                if (ht[k].weight<min1)  
                {  
                    min2=min1;  
                    rnode=lnode;  
                    min1=ht[k].weight;  
                    lnode=k;  
                }  
                else if (ht[k].weight<min2)  
                {  
                    min2=ht[k].weight;  
                    rnode=k;  
                }  
            }  
        ht[i].weight=ht[lnode].weight+ht[rnode].weight;  
        ht[i].lchild=lnode;  
        ht[i].rchild=rnode;  
        ht[lnode].parent=i;  
        ht[rnode].parent=i;  
    }  
}  
  
//实现哈夫曼编码  
void CreateHCode(HTNode ht[],HCode hcd[],int n)  
{  
    int i,f,c;  
    HCode hc;  
    for (i=0; i<n; i++) //根据哈夫曼树求哈夫曼编码  
    {  
        hc.start=n;  
        c=i;  
        f=ht[i].parent;  
        while (f!=-1)   //循序直到树根结点  
        {  
            if (ht[f].lchild==c)    //处理左孩子结点  
                hc.cd[hc.start--]='0';  
            else                    //处理右孩子结点  
                hc.cd[hc.start--]='1';  
            c=f;  
            f=ht[f].parent;  
        }  
        hc.start++;     //start指向哈夫曼编码最开始字符  
        hcd[i]=hc;  
    }  
}  
  
//输出哈夫曼编码  
void DispHCode(HTNode ht[],HCode hcd[],int n)  
{  
    int i,k;  
    double sum=0,m=0;  
    int j;  
    printf("  输出哈夫曼编码:\n"); //输出哈夫曼编码  
    for (i=0; i<n; i++)  
    {  
        j=0;  
        printf("      %c:\t",ht[i].data);  
        for (k=hcd[i].start; k<=n; k++)  
        {  
            printf("%c",hcd[i].cd[k]);  
            j++;  
        }  
        m+=ht[i].weight;  
        sum+=ht[i].weight*j;  
        printf("\n");  
    }  
    printf("\n  平均长度=%g\n",1.0*sum/m);  
}  
#define MaxSize 100  
typedef char ElemType;  
#define N 50        //叶子结点数  
#define M 2*N-1     //树中结点总数  
  
//哈夫曼树的节点结构类型  
typedef struct  
{  
    char data;  //结点值  
    double weight;  //权重  
    int parent;     //双亲结点  
    int lchild;     //左孩子结点  
    int rchild;     //右孩子结点  
} HTNode;  
  
//每个节点哈夫曼编码的结构类型  
typedef struct  
{  
    char cd[N]; //存放哈夫曼码  
    int start;  
} HCode;  
  
  
void DispHCode(HTNode ht[],HCode hcd[],int n);  
void CreateHCode(HTNode ht[],HCode hcd[],int n);  
void CreateHT(HTNode ht[],int n);

运行结果


知识点总结

这个程序的关键点在于树的构建,先找两个最小的数,相加成为一个双亲节点,依次构建完成,存取每个元素的编码时还需单独用一个结构体存储。

学习心得

的画图啊


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值