蓝桥杯——最小公倍数

为什么1小时有60分钟,而不是100分钟呢?这是历史上的习惯导致。

但也并非纯粹的偶然:60是个优秀的数字,它的因子比较多。

事实上,它是1至6的每个数字的倍数。即1,2,3,4,5,6都是可以除尽60。

 

我们希望寻找到能除尽1至n的的每个数字的最小整数。

 

不要小看这个数字,它可能十分大,比如n=100, 则该数为:

69720375229712477164533808935312303556800

 

请编写程序,实现对用户输入的 n (n<100)求出1~n的最小公倍数。

 

例如:

用户输入:

6

程序输出:

60

 

用户输入:

10

程序输出:

2520

分析:首先肯定是需要将1-n的最小公倍数求出,比如6前面如果有2 3就可以替代。运用双重循环,如果这个数字可以被前面任意一个数整除,则被替换,后来只需要将这些数字乘起来即可,这是一个较大的数字我们应该用数组存储,然后tag表示进位,讲得到的数字与a[j]相乘即可。

分解质因数法:两个数的最小公倍数等于该两个数的所有质因数的乘积。
那么我们可以类比找两个数的质因数的方法找到1到n所有的质因数:

两个数的最小公倍数就是不断找到该两个数的公约数并两个数同时除去该两个数,最后该两个数互质;

那么类似我们求n个数的最小公倍数:假设我们已经求出了前n-1个数的最小公倍数
我们只需要求出这个数和n的最小公倍数就是1-n的最小公倍数;

这时我们可以用n依次除以前n-1个数,如果能除则除以这个数,达到这个数与前n个数没有公约数的效果,那么就可以做到前n个数互质且乘积就是我们求的前n个数的最小公倍数。

大数相乘其实就是模拟我们平时计算两个数相乘时的计算过程:该位上的最后结果就是乘数和相应位置上的被乘数的乘积加上后一位的进位;

#include <stdio.h>
#include <memory.h>
using namespace std;
int main()
{
    int i,j;
    int num[100];//存储最大公倍数
    int a[105];
    for(i=1; i<=101; i++)
        a[i]=i;
    for(i=2; i<=101; i++)
        for(j=i+1; j<=101; j++)
            if(a[j]%a[i]==0)
                a[j]=a[j]/a[i];//求多个数最小公倍数的核心思想
    int n;
 while(~scanf("%d",&n))
    {
        memset(num,0,sizeof(num));
        num[0]=1;
        for(i=2; i<=n; i++)
        {
            int c=0;
            for(j=0; j<i; j++)
            {
                int  s=num[j]*a[i]+c;//大数的最基本算法
                num[j]=s%10;
                c=s/10;
            }
        }
        for(i=99; i>=0; i--)
            if(num[i])
                break;
        for(j=i; j>=0; j--)
            printf("%d",num[j]);//逆序输出答案
        printf("\n");
    }
}

### 关于RSA解密在蓝桥杯竞赛中的实现与题目解析 RSA是一种基于大整数分解困难性的公钥加密算法,在蓝桥杯竞赛中,涉及RSA的相关题目通常会结合数论基础知识进行设计。以下是针对该主题的具体分析: #### RSA算法的核心原理 RSA算法依赖于欧拉定理以及模反元素的概念。其核心在于生成一对公私钥,并利用这两个密钥完成加解密操作。具体来说,RSA的数学基础可以表示如下: \[ \text{gcd}(p, q) = 1,\quad n = p \cdot q,\quad φ(n) = (p-1)(q-1),\quad e \cdot d ≡ 1 (\mod φ(n)) \] 其中 \(n\) 是两个素数 \(p\) 和 \(q\) 的乘积,\(φ(n)\) 表示小于等于 \(n\) 且与其互质的正整数个数[^1]。 #### 蓝桥杯中的RSA相关题目特点 蓝桥杯竞赛中的RSA题目多以简化形式呈现,重点考查选手对基本概念的理解和实际编程能力。例如,可能给出一组已知参数(如 \(e\)、\(d\) 或部分中间计算结果),要求推导其他未知量或者验证某些条件是否成立。这类问题常伴随以下知识点: - **模运算**:掌握同余关系及其性质对于解答此类问题是必不可少的。 - **最大公约数(GCD)** 和最小公倍数(LCM)[^2]:虽然直接用于RSA场景较少见,但它们构成了更复杂算术的基础工具集。 - 大整数处理技术:由于RSA涉及到非常大的数值范围,因此如何高效存储并操作这些数据成为另一个重要考量因素[^3]。 #### C++代码实例展示 下面提供了一个简单的C++程序片段来演示如何手动实现求取两数的最大公约数函数`gcd()`及据此构建的最低公共倍数函数`lcm()`: ```cpp // 定义求最大公约数的方法 int gcd(int a, int b){ while(b != 0){ int temp = b; b = a % b; a = temp; } return abs(a); } // 基于上述定义编写寻找最小公倍数方法 int lcm(int a, int b){ if( a==0 || b==0 )return 0; return std::abs((long long)a*(long long)b)/gcd(a,b); } ``` 此段代码展示了标准辗转相除法的应用过程,同时也体现了预防溢出风险的重要性——即先执行除法再做乘法运算顺序调整策略。 #### 结合实际案例探讨 考虑到蓝桥杯真题《核桃的数量》所提出的挑战情境,“给定若干堆数量不等的物品总数”,这实际上也可以看作是对离散结构下组合优化模型的一种抽象表达方式之一;尽管表面上看似无关紧要的小游戏设定背后隐藏着深刻理论依据支撑整个解决方案架构搭建思路方向指引作用明显可见一斑。 最后值得注意的是,在真实比赛环境下遇到类似开放型探索类命题时除了扎实的专业功底外还需要具备灵活应变思维模式转换技巧才能从容应对各种突发状况取得优异成绩表现出来!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼猜想·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值