基于稀疏表示的分类方法 Sparse Representation based Classification Method

文章来源 Jia K, Chan T H, Ma Y. Robust and practical face recognition via structured sparsity[J]. Computer Vision–ECCV 2012, 2012: 331-344.

Highlight

  • 作为一种 sparse representation based classification method(SRC) 分类方法,利用训练集中图像的稀疏线性表示 testing image,加上稀疏误差项对于图像线性表示误差进行补偿,从而在此基础上进行对应类别的判断。
  • 传统的 SRC 方法中,认为稀疏线性表示的误差项是 pixel-wise sparse (以 L1范数的形式建模),但是在实际情况中常常是以一定的结构稀疏地分布在图像中,因此将 structured sparsity-inducing norm 引入 SRC 框架中对于误差项进行建模。

Related Work

  • 传统基于稀疏表示分类识别方法
    这里写图片描述
    A 矩阵是所有 subject 内的所有图像,可以通过上式重构出稀疏表示系数 x 和稀疏误差 e。

  • 处理训练集图像和 testing 图像未配准问题
    这里写图片描述
    y’ 是没有对准的 testing image,这里写图片描述 是对应的空间变换。需要注意的是 y’ 依次对准于 每个 subject Ak 而不是直接和整个 训练集 A,这是因为优化问题的较为困难。

空间结构相关的 稀疏正则化方式

  • Group LASSO
    将变量拆分成 disjoint groups ,但是这些 disjoint groups 存在的问题在于类似的空间结构在正则化时就被固定下来了,不能准确灵活地 match 精细的 error term 在实际情况下。这里写图片描述 这种正则化方式在 group 层面提高稀疏性能,使得同样一个 group 内变量同时为 0/非0

  • Structured sparsity-inducing norm
    通过将变量拆分成 overlapping groups,虽然还是 pre-fixed 结构, structured sparsity-inducing norm 能够引入更加精细的结构。 特别地,本文采用层次化的树形结构稀疏项,具体来说,这种结构稀疏项的每个 overlapping groups 是具有不同大小的 patch,且每个 group 对应 tree 结构中的一个节点。同样的此类问题采用 ALM 方法求解,其中需要注意的是因为结构稀疏项会造成最邻近问题 proximal problem,这个问题还是可以通过二次最小流问题求解得到(详解见上篇博文~)。
    这里写图片描述
    因此通用的 树形结构化稀疏范数 可以表示为 这里写图片描述 可以看到这个范数也是对每个 group 进行 p范数,最后将这些 overlapping group 的 p范数相加(有点 2,1范数的意思。在这儿我们采用 无穷范数。

利用结构稀疏性进行分类

  1. 首先将 testing image 进行稀疏表示(error term 采用结构稀疏性)
    这里写图片描述 或者 subject-wise 的方法
    这里写图片描述 这种方法能够较好的建模 within-class 误差,能够衡量 testing image 在每一个 subject 的 match 程度,这个指标在分类任务中更加重要。求解关于 结构稀疏项引入的最邻近问题,可以通过二次最小流方法解决。

  2. 分类准则
    这里写图片描述
    这个分类准则是对应于稀疏表示 (L1-Lstruct) 分类方法。其中这里写图片描述 表示稀疏系数 x 对应于 第k个 subject 的部分,因此 testing image 属于的类别 y 可以通过残差项得到。

    这里写图片描述
    这个分类准则是对应于稀疏表示 (Lstruct) 的分类方法。这种 subject-wise 的方法不再适用于之前提到的分类准则,因此一种自然地想法就是直接比较对于每一类的 误差项,误差项越小就代表属于该类的可能性越大。

    基于误差项 这里写图片描述 的 support set 区域来进行分类:这里写图片描述

  3. 简单校正
    这里写图片描述
    对于形变量而言是 非凸问题,但是可以由某种方法得到关于形变量的 很好的 initial 值(这也就是很直观的解决非凸问题的方法,确保初始值就是在最优值附近),因此只需要考虑迭代更新步长即可:
    这里写图片描述

总结

文章采用了一种基于稀疏表示的分类方法,通过对误差项的树状结构稀疏性正则化使得稀疏表示的准确性得到提升,从而进一步的提高分类精度。

  • 1
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
稀疏表示分类是一种机器学习方法,用于对数据进行分类。它的核心思想是通过稀疏表示来表示数据,并在稀疏表示的基础上进行分类稀疏表示是指将每个输入样本表示为一个稀疏向量,其中只有少数几个元素是非零的。这样的向量表示能够更好地捕捉数据的本质特征,同时减少了数据的冗余。例如,对于一张图像,可以将其表示为一个由像素强度组成的稀疏向量,其中只有少数几个像素具有非零值。 在稀疏表示分类中,首先需要通过训练集学习一个稀疏表示模型。这可以通过使用稀疏表示算法(如LASSO、稀疏自编码器等)来实现。学习得到的模型将能够将输入样本表示为稀疏向量。 接下来,在分类阶段,将测试样本表示为稀疏向量,并使用训练得到的稀疏表示模型进行分类。具体而言,可以通过计算测试样本的稀疏表示与每个类别的稀疏表示的距离(如余弦距离、欧氏距离等)来确定其所属的类别。距离最近的类别即被认为是该测试样本所属的类别。 稀疏表示分类具有一定的优势。首先,通过使用稀疏表示,可以减少数据的冗余,提取出更重要的特征。其次,稀疏表示模型具有较好的鲁棒性和泛化能力,能够适应不同的数据分布和噪声。此外,稀疏表示分类还可以处理高维数据和样本不平衡的问题。 总之,稀疏表示分类是一种有效的机器学习方法,通过将数据表示为稀疏向量,可以实现对数据的分类,并具有较好的性能和应用潜力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值