自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

计算机视觉之光

电子工业出版社优秀作者,代表作《OpenCV轻松入门》、《计算机视觉40例》等。

  • 博客(798)
  • 资源 (80)
  • 收藏
  • 关注

原创 图像的压缩感知的MATLAB实现(第3种方案)

分解低通和高通滤波器% N=256;% 矩阵维数(大小为2的整数幂次)% 滤波器长度% 最大层数% 最小层数ww=1;% 预处理矩阵% 矩阵构造nn=2^jj;% 构造向量% 向量圆周移位end% 构造正交矩阵w1=[p1;p2];ww=ww*w;clear p1;clear p2;end# 相关博文。

2024-02-25 10:23:09 135

原创 小波变换模拟

小波变换是一种信号处理技术,通过在时间-频率域中使用基于小波的函数进行信号分析。小波变换在处理非平稳信号和图像时特别有用,可以将信号分解为不同频率的成分。它在数据压缩、去噪、特征提取等领域有广泛应用。MATLAB中提供了用于二维离散小波变换的函数dwt2,可以将图像进行小波分解。该函数执行的是多级离散小波变换,将图像分解为多个尺度的近似系数和细节系数。具体来说,dwt2其中,Xwavelet'haar''db1'CS可以通过调用dwt2函数来执行二维离散小波变换,得到图像的小波分解系数和结构信息。

2024-02-25 10:16:49 587

原创 最小二乘法

最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。具体来说,它可以用于线性回归分析,即找到一条最佳拟合直线(或更一般的曲线或面),使得实际观察数据点到这条直线(或曲线/面)的垂直距离(也就是误差)的平方和达到最小。在数学表示上,如果有一组观测数据集((x_i, y_i)),其中(i = 1, 2, …

2024-02-25 08:51:18 379

原创 探索无限维度的奥秘:Hilbert空间

Hilbert空间得名于德国数学家David Hilbert,它是一个完备的内积空间。这句话含有三个关键词:完备、内积和空间。空间:这里的空间不是我们日常生活的物理空间,而是一个数学概念,指的是一组元素的集合,这些元素可以以数学上的方式互动——可以相加,也可以乘以数值(标量)。内积:内积是一个函数,它能够接受空间中的两个元素并返回一个数值,以表示这两个元素之间的某种“相似性”,例如在二维或三维空间中,内积就可以表示为点乘。完备。

2024-02-24 18:08:08 494

原创 贪婪算法入门指南

贪婪算法(Greedy Algorithm)是一种在计算机科学和数学中使用的算法设计策略,其核心思想是通过一系列局部最优选择来寻求全局最优的解决方案。but,这听起来很完美,但实际上,贪婪算法并不总是能够得到全局最优解,尤其是在那些需要考虑多阶段结果的复杂问题中。

2024-02-24 17:53:54 719

原创 用买糖果的方式来理解正交匹配追踪(OMP)算法

在信号处理领域,压缩感知(Compressed Sensing)是一种能够从远少于传统奈奎斯特采样定理所要求的样本数目中重建稀疏信号的技术。压缩感知的理论基础在于一个前提假设,即许多自然信号都含有稀疏的表示,换句话说,这些信号可以用很少的非零系数表达。在这个框架下,贪婪算法,如匹配追踪(Matching Pursuit, MP)和正交匹配追踪(Orthogonal Matching Pursuit, OMP),提供了有效的求解方法。

2024-02-24 08:31:40 438

原创 深入浅出:探究过完备字典矩阵

首先,我们先来理解一下字典矩阵的概念。在数学上,字典矩阵基本上就是一组向量(列),它们用于表示或者重建信号或数据。如果这些列向量线性无关,我们可以将它们视为一组基,正如坐标系中的x轴和y轴一样。不过,一般的基只能刚好填满空间,每个向量只能使用一次。但有时候,我们需要更多的向量来更加灵活地表示数据,就像适时拥有多种工具以应对不同的情况一样。这时候,过完备字典矩阵就登场了。所谓“过完备”指的是我们有更多的向量来表示空间,超出了构成空间的必需数量。

2024-02-24 08:14:38 484

原创 MATLAB中的稀疏矩阵和密集矩阵

在MATLAB中,矩阵可以表示为密集或稀疏格式。通常,矩阵默认以密集格式存储,这意味着每个元素都明确地存储在内存中,无论它的值是多少。然而,当矩阵含有大量的零元素时,这种存储方式就会变得非常低效。为了更有效地存储和操作这种矩阵,可以使用稀疏矩阵表示,其中只记录非零元素和它们的索引位置。

2024-02-23 21:49:17 1041

原创 图像压缩感知的MATLAB实现(OMP)

前面实现了效果还不错,缺点是速度慢如牛。下面我们采用OMP对其进行优化,提升速度。

2024-02-23 14:06:16 498

原创 世界上最简单的无解问题

1990年的Cleve’s Corner专栏文章《世界上最简单的无解问题》中描述了压缩感知遇到的问题的一个简化版本。例如,两个平均值为3的数字,这些数字是什么?在我们抱怨没有足够的信息后,可能会回答2和4。如果我们这样做了,那意味着我们无意识地引入了一种规范化的方式,要求结果是两个不同的整数。

2024-02-22 18:05:19 838

原创 2-范数概念及Python计算演示

2-范数(Euclidean norm),也常称为“欧几里得范数”,是在向量空间中衡量向量大小的一种方法。在数学上,对于一个实数或复数向量,2-范数定义为其各元素的平方和的平方根。对于一个n维向量( \vec{x} = [x_1, x_2, …, x_n] ),其2-范数可以表示为:2-范数提供了一个度量,即从原点到向量表示点的直线距离,这也是在欧几里得空间中最直观的长度概念。

2024-02-22 11:40:25 624

原创 MATLAB通过cvx计算L1仿真压缩感知

使用MATLAB仿真压缩感知。

2024-02-22 10:14:14 934

原创 压缩感知常用的重建算法

在压缩感知(Compressed Sensing, CS)框架中,重建算法是指将从原始信号中以低于奈奎斯特率采集得到的压缩测量值恢复成完整信号的数学和计算过程。由于信号在采集过程中被压缩,因此重建算法的目标是找到最符合测量值的稀疏信号表示。

2024-02-21 22:08:59 964

原创 压缩感知常用的测量矩阵

在压缩感知(Compressed Sensing,CS)理论中,测量矩阵(也称为采样矩阵)是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵,用于将信号从高维空间映射到低维空间,生成观测向量。如果信号在某个基下是稀疏的,那么通过与测量矩阵相乘,可以得到它的压缩表示。

2024-02-21 22:04:38 938

原创 压缩感知中常用的稀疏基

在压缩感知中,稀疏基是指可以将信号表示为少数几个非零系数的基。信号在这组基下的表示称为稀疏表示。理想情况下,信号在稀疏基下的大部分系数都应该为零,只有少数几个系数是非零的。稀疏基的选择对信号的稀疏表示和压缩感知的效果有着重要影响。稀疏基的作用是能够有效地表示信号,使得信号在该基下的表示尽可能地“稀疏”,即大多数系数为零或接近零,只有少数几个系数是显著的。这种稀疏性质使得信号可以通过较少的信息(系数)进行恢复,从而达到压缩的目的。离散余弦变换(DCT)基:小波变换基:离散傅里叶变换(DFT)基:自定义字典:稀

2024-02-21 21:57:37 1009

原创 压缩感知的图像仿真(MATLAB源代码)

压缩感知是一种用于高效获取和表示信号的技术,它可以显著减少数据的采样和传输量,同时保持对信号的高质量恢复能力。在压缩感知中,信号被表示为其在一个稀疏基中的稀疏线性组合。通过仅使用少量的随机投影测量,就能够捕捉信号的大部分信息,并且可以利用优化方法恢复原始信号。MATLAB是一种功能强大的数值计算和科学编程工具,它提供了丰富的工具箱和函数来支持压缩感知的仿真和实现。其中一个常用的工具是l1_image软件包,它提供了一种基于l1范数最小化的方法,用于压缩感知图像恢复。

2024-02-21 17:31:12 1082

原创 压缩感知(Compressed Sensing)的MATLAB仿真实现

在前一篇文章:中,我们介绍了针对稀疏信号进行压缩感知的MATLAB仿真。本篇我们介绍一下针对的是原始的非稀疏信号,看看如何进行处理。本文中,我们直接进行了采样处理。

2024-02-21 13:03:22 1017

原创 正交匹配追踪(Orthogonal Matching Pursuit, OMP)的MATLAB实现

压缩感知(Compressed Sensing, CS)是一种利用稀疏信号的先验知识,用远少于奈奎斯特采样定理要求的样本数目恢复整个信号的技术。正交匹配追踪(Orthogonal Matching Pursuit, OMP)是一种常见的贪婪算法(Greedy algorithm),用于解决压缩感知中的信号重构问题。OMP算法试图找到一组稀疏基,这些基与测量值之间有最大的相关性,并且用于迭代地重构原始信号。

2024-02-21 10:44:15 808

原创 正交匹配追踪算法(Orthogonal Matching Pursuit)实现过程及Python模拟

OMP算法的目标是解决下面的优化问题:在已知观测向量y和测量矩阵A的情况下,找到一个稀疏的系数向量x,使得Ax尽可能接近于y。其中||x||_0是x向量的0-范数(即非零元素的数量),而是Ax和y之间的2-范数(即欧几里得距离)。ε是一个容差值,代表了在重构y时所能接受的最大误差。OMP算法的优点是简单易用、实现快捷,并且相对容易理解。然而由于它是一种贪婪算法,因此有时可能不会找到全局最优解。

2024-02-20 21:42:49 968

原创 计算机视觉学习指南(划分为20个大类)

计算机视觉的知识领域广泛而庞杂,涵盖了众多重要的方向和技术。为了更好地组织这些知识,我们需要遵循无交叉无重复(Mutually Exclusive Collectively Exhaustive,MECE)的原则,并采用循序渐进的方式进行分类和划分。按照无交叉无重复的原则,我们将计算机视觉划分为20个重要的方向,每个方向都具有明确的定义和特定的应用领域。通过这种划分方式,可以确保每个方向都在整个计算机视觉领域中是独立且不重叠的。

2024-02-20 13:06:13 1220

原创 欠定方程组及其求解

欠定方程组是指方程的数量少于未知数的数量的方程组。在这种情况下,通常有无限多个解,因为给定的方程不足以唯一确定所有未知数的值。在某些情况下,我们可以利用额外的信息或假设,如稀疏性或其他约束,来找到一个合理的解。

2024-02-20 11:49:34 753

原创 通俗易懂地理解稀疏性

一个信号如果在某个域具有很多“零”值,并且只有少数非零值,我们可以说它在这个域是稀疏的。这种稀疏性是极富价值的,因为它让信息处理、存储和传输更加高效。

2024-02-20 09:12:20 613

原创 计算机视觉领域内100个核心问题的问与答

创建一个完整的计算机视觉入门问题及解答集是一个庞大的任务,可以专门写一本书了。为了帮助大家快速入门,了解计算机视觉领域的核心问题,快速入门。在此,我提供一个简略的大纲,其中涵盖了10个大类,并为每个大类列出10个代表性问题。当然,每个问题都需要一个完整的解答。但是限于篇幅,这里我只能简要地呈现每个问题的主题和核心概念。

2024-02-20 07:18:26 1141

原创 压缩感知——革新数据采集的科学魔法

压缩感知作为一种强大的数学工具,正在推动科技领域的新革命。它告诉我们,有时候“少”实际上可以等同于“多”,只要我们甄选正确的采样方式与恢复技术。而这些改变有着深远的意义,从提升我们的健康质量到拓宽人类的探索地平线,压缩感知的魔法还将不断展开它的潜能。随着进一步的研究与应用,我们期待看到它如何继续改变世界。

2024-02-19 22:25:50 982

原创 通俗易懂的L0范数和L1范数及其Python实现

L0 范数并不是真正意义上的一个范数,因为它不满足范数的三角不等式性质,但它在数学优化和信号处理等领域有着实际的应用。L0 范数指的是向量中非零元素的个数。它通常用来度量向量的稀疏性。数学上表示为:例如,向量 (x = [1, 0, 2, 0, 3]) 的 L0 范数是 3,因为该向量中有三个非零元素。

2024-02-19 21:54:09 1168

原创 【压缩感知基础】Nyquist采样定理

Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。

2024-02-19 21:25:27 293

原创 压缩感知(Compressed Sensing,CS)的基础知识

压缩感知(Compressed Sensing,CS)是一种用于信号处理的技术,旨在以少于奈奎斯特采样定理所要求的样本频率来重构信号。该技术利用信号的稀疏性,即信号可以用较少的非零系数表示。压缩感知在图像获取中的应用使得在采集过程中就以较少的样本来捕获图像,然后通过算法完整重构出原始图像。

2024-02-19 18:22:15 537

原创 压缩感知及其Python示例

压缩感知(Compressed Sensing, CS)是一种信号处理技术,它允许从远低于奈奎斯特采样定律所要求的采样率下重构稀疏(或可压缩)信号。这是基于信号稀疏性的先验知识。

2024-02-19 18:00:44 1057

原创 如何系统地学习Python

建议系统学习Python的途径遵循理论与实践相结合的教学方法。

2024-02-18 22:28:07 2171

原创 压缩感知为什么要进行“不相干欠采样”?

压缩感知理论的三个核心要素。1、不相干性信号欠采样;2、稀疏变换;3、非线性迭代重建。为了通俗解释“不相干性信号欠采样”,我们可以借用一种生活中的例子——拼图。

2024-02-18 22:23:49 166

原创 使用傅里叶实现100倍的压缩效果(附Python源码)

将傅里叶系数核心的1%保留,其余全部删除。然后利用这留下的1%复原原始图像,得到相对清晰的原始图像。显示原始图像,傅里叶、仅保留1%的傅里叶,复原图像。

2024-02-18 21:31:12 369

原创 入门OpenCV:图像阈值处理

二进制阈值:如果像素值高于阈值,则赋予一个新值(通常是白色),否则赋予另一个值(通常是黑色)。反二进制阈值:与二进制阈值相反,如果像素值高于阈值,则赋予黑色,否则赋予白色。截断阈值:如果像素值高于阈值,就赋予阈值,否则保持不变。阈值化为零:如果像素值高于阈值,则保持不变,否则赋予零。反阈值化为零:与阈值化为零相反,如果像素值高于阈值,则赋予零,否则保持不变。

2024-02-17 21:30:07 716

原创 OpenCV人脸检测案例实战

在OpenCV中,人脸检测使用的是cv2.CascadeClassifier.detectMultiScale()函数,它可以检测出图片中所有的人脸。该函数由分类器对象调用,其语法格式为:objects:返回值,目标对象的矩形框向量组。该值是一组矩形信息,包含了每个检测到的人脸所对应矩形框的(x方向位置、y方向位置、宽度、高度)信息。

2024-02-17 21:18:11 905

原创 OpenCV中的边缘检测技术及实现

Canny边缘检测是一种经典的边缘检测算法,它被广泛应用于图像处理领域。该方法结合了多个步骤,包括高斯滤波、计算梯度、非最大值抑制和双阈值处理。首先,通过应用高斯滤波器来平滑图像,以减少噪声的影响。然后,计算图像的梯度,找到像素点的边缘强度和方向。接下来,进行非最大值抑制,通过比较像素点周围的梯度值来细化边缘。最后,通过设置高低阈值来检测真正的边缘。

2024-02-16 21:46:49 1055

原创 理解并实现OpenCV中的图像平滑技术

图像模糊(也称为图像平滑)是计算机视觉和图像处理中的基本操作之一。模糊图像通常是噪声减少、边缘检测和特征提取等应用的第一步。在本博客中,我们将重点介绍如何使用Python中的OpenCV库应用多种模糊技术。

2024-02-16 21:38:34 1018

原创 计算机视觉基础【OpenCV轻松入门】:获取图像的ROI

在图像处理过程中,我们可能会对图像的某一个特定区域感兴趣,该区域被称为感兴趣区域(Region of Interest,ROI)。在设定感兴趣区域ROI后,就可以对该区域进行整体操作。

2024-02-15 21:59:36 269

原创 计算机视觉基础:【矩阵】矩阵选取子集

例如,在下图中选定第2行、第3行和第2列、第3列的交集。选取矩阵中指定的行和列的交集。

2024-02-15 21:53:06 415

原创 OpenCV基础:用Python生成一幅随机的噪声图像

使用Python:生成一幅随机数值的灰度图像,图像大小为16×16像素。借助OpenCV库。输出数值,并显示图像。

2024-02-14 22:06:28 287

原创 OpenCV基础:用Python生成一幅黑白图像

使用Python:生成一幅左黑右白的灰度图像,图像大小为16×16像素。借助OpenCV库。输出数值,并显示图像。

2024-02-14 22:03:46 213

原创 计算机视觉基础:矩阵运算

一个矩阵是由行(row)和列(column)组成的一个矩形数组,通常包含数字。我们可以用大写字母(如 A、B)来表示一个矩阵。其中,a11是位于第一行第一列的元素,a12是第一行第二列的元素,以此类推。图像可以被看作是一个巨大的矩阵,其中每个像素点对应矩阵中的一个元素。

2024-02-13 16:18:50 1870

基于位平面游程编码图像压缩

基于位平面游程编码图像压缩,沙威作品,值得参考。

2012-11-09

信息论与信息编码课件

信息论与信息编码课件,是个ppt课件,有一定的参考价值。

2012-11-09

基于游程编码的分块交叉数字图像压缩算法

基于游程编码的分块交叉数字图像压缩算法,应用游程编码实现视频压缩。同时为了提高压缩率,在视频帧之间进行了压缩。

2012-11-09

用游程编码对二值图像图像进行压缩.

用游程编码对二值图像图像进行压缩.是一个实验报告,有具体的细节信息。使用c实现。

2012-11-09

数据压缩试验+游程编码

数据压缩试验+游程编码,使用c实现,单纯的代码实现,有结果输出,无具体说明。

2012-11-09

上海大学哈夫曼编码报告

上海大学哈夫曼编码报告,有具体的算法实现过程及图示,值得参考。

2012-11-09

利用游程编码实现二值图像压缩

利用游程编码实现二值图像压缩.使用c语言实现。前面介绍了算数编码。游程编码有具体的实现过程。值得参考。

2012-11-09

游程编码实验报告(二值图像)

游程编码实验报告,详细介绍了游程编码的具体matlab实现算法。有一定的参考价值。该算法针对的是二值图像。

2012-11-09

游程编码实验报告

游程编码实验报告,详细介绍了游程编码的具体matlab实现算法。有一定的参考价值。

2012-11-09

压缩感知理论及其研究进展.

压缩感知理论及其研究进展、pdf参考文献,有参考价值,值得参考。感谢分享。

2012-09-19

压缩感知基本理论:回顾与展望

压缩感知基本理论:回顾与展望,b比较详细的资料,值得参考。

2012-09-19

软件文档编写指南

软件文档编写指南,资料比较详细,值得参考。

2012-09-18

帐户泄漏那点破事

帐户泄漏那点破事,是个pdf文档,值得参考。

2012-09-18

恶意移动代码分析

恶意移动代码分析,是个ppt文档,值得参考。

2012-09-18

压缩感知的入门资料

压缩感知的入门资料,值得参考,适合入门有一定的参考价值。

2012-09-18

基于肤色和harr特征的人脸检测

基于肤色和harr特征的人脸检测,是个pdf文件,值得参考,适合入门。

2012-09-18

压缩感知材料

压缩感知材料,是一片学术论文,值得参考。

2012-09-12

Android团购下载

Android团购下载,适合入门开发者,有一定的参考价值。

2012-09-03

手势识别(竞赛项目)

手势识别(竞赛项目),各种资料比较齐全,包括文档,测试文档,等等。

2012-08-31

openCV+手势识别

openCV+手势识别,能够对参数进行调整实现。

2012-08-31

李立宗《计算机视觉40例》PPT课件:第4章《图像加密与解密》

李立宗《计算机视觉40例》PPT课件:第4章《图像加密与解密》

2022-12-09

李立宗《计算机视觉40例》PPT课件:第3章

李立宗《计算机视觉40例》PPT课件:第3章

2022-12-06

李立宗《计算机视觉40例》课件,第2章

李立宗《计算机视觉40例》课件,第2章

2022-12-04

《计算机视觉40例》课件:第1章

《计算机视觉40例》课件:第1章。 课件对《计算机视觉40例》内第1章内容进行了系统的阐释。 内容全面,制作精美,欢迎有需要的朋友下载。

2022-12-03

数字模板(每个数字十种不同的字体)

根据不同的字体提取得到的数字模板。先使用特定字体书写,然后通过python提取得到的,每个字体10个样本。共计100个。可以用于如印刷体识别、手写字体识别。请注意:样本量较小。

2021-08-13

randomForest

Random Forests: Statistical Methods for Prediction and Understanding 随机森林的学术报告,作者在不同场合报告,内容是重复的。 Adele Cutler关于RF的报告

2021-08-08

指纹库——来源于FVC2004

指纹库

2021-08-03

Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerpri

Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerprint Recognition

2021-08-03

A Large-Scale Study of Fingerprint Matching Systems for Sensor Interoperability

A Large-Scale Study of Fingerprint Matching Systems for Sensor Interoperability Problem

2021-07-30

Presentazione MCC(Minutia Cylinder-Code: A New Representation and Matching Tech)

Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerpri 对应的PPT资料

2021-07-30

Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerpri

Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerpri

2021-07-30

Lowe的sift演示程序

Lowe的sift演示程序

2021-07-29

Lowe的sift经典论文(2篇)

Lowe的sift经典论文(2篇)

2021-07-29

sift原理介绍(资源:主要是PPT资源)

sift原理介绍

2021-07-23

python+opencv实现指纹识别介绍

python+opencv实现指纹识别介绍

2021-07-23

指纹识别简介理论介绍基础

指纹识别介绍

2021-07-23

python+opencv识别性别和年龄

python+opencv识别性别和年龄

2021-04-23

yolov3.weight

yolov3.weight资源文件

2021-04-17

游程编码源代码

游程编码源代码,两个源文件,采用c语言编写。值得参考。

2012-11-09

游程编码课程设计实验报告

游程编码课程设计实验报告,内含实验报告,c++源代码,值得参考。

2012-11-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除