- 博客(905)
- 资源 (80)
- 收藏
- 关注
原创 Python不支持重载,如果想重载该如何做?
方法参数的类型在运行时才确定,而不是在编译时。因此,Python 解释器在调用方法时,主要关心方法名和传递的参数数量是否匹配当前定义的方法,而不是参数的类型。,像 Java 或 C++ 那样允许在同一个类中定义多个同名但参数列表(参数数量、类型或顺序)不同的方法。在 Python 中,如果你在同一个类中定义了多个同名的方法,允许某些参数有默认值,这样调用时可以省略这些参数。来检查参数的类型,并根据不同类型执行不同的操作。,并在方法内部根据参数的数量和类型进行逻辑判断。只根据第一个参数的类型进行分派。
2025-05-08 14:19:52
43
原创 Python 程序设计教程:构建您的第一个计算器类
这种组织代码的方式,将现实世界或概念性的事物模型化为具有属性(数据)和行为(方法)的对象,是 OOP 的一个关键优势,有助于管理更复杂的程序。例如,一个复杂的应用程序可能包含许多不同的类,每个类负责一部分特定的功能,这种模块化的方式使得大型项目更易于管理和扩展。参数使得方法能够访问和修改调用该方法的特定对象的属性(尽管在我们这个简单的计算器中,这些方法主要使用传递给它们的参数,而不是对象的内部属性)。良好的注释习惯如同为将来的自己或可能阅读代码的其他人留下有用的笔记,它解释了代码的“为什么”和“怎么做”。
2025-05-07 13:43:18
37
原创 Python使用turtle绘制钟表【源代码及详细解释】
这个程序的目标是使用turtle图形库在屏幕上绘制一个能够显示当前时间的模拟时钟(带有圆形表盘、刻度和时/分/秒针)。
2025-05-06 09:33:11
29
原创 【翻译论文】Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions
模型上下文协议(MCP)是一种标准化接口,旨在实现 AI 模型与外部工具和资源之间的无缝交互,打破数据孤岛并促进跨不同系统的互操作性。本文全面概述了 MCP,重点关注其核心组件、工作流程以及 MCP 服务器的生命周期,该生命周期包括三个关键阶段:创建、运行和更新。我们分析了与每个阶段相关的安全和隐私风险,并提出了缓解潜在威胁的策略。本文还考察了当前的 MCP 态势,包括行业领导者的采用情况、各种用例,以及支持其集成的工具和平台。
2025-05-05 16:51:17
1488
原创 【翻译、转载】模型组件协议 (MCP):每个开发者都应尝试的 8 个 MCP 服务器!
它促进了互操作性,减少了对定制集成的需求,并简化了 AI 应用的开发。对于管理多个代码库的组织,它通过处理日常维护任务、生成关于开发模式的深刻分析,甚至根据专业知识和工作负载分配建议最佳审查者,提供了前所未有的效率。对于使用 Slack 作为主要沟通中心的开发团队来说,这种集成弥合了对话与行动之间的差距,使 AI 能够成为一个积极主动的团队成员,而不仅仅是一个被动工具。通过使 AI 能够直接与 Slack 的基础设施交互,它消除了重复性的沟通任务,并创建了能够实时响应团队活动的智能工作流程。
2025-05-05 16:30:40
665
原创 简单理解MCP:AI如何使用工具
想象一下,你试图将来自不同国家的电器插头插入你家的墙上插座——你需要各种转换器,因为它们的插头标准各不相同!类似地,不同的AI模型和不同的工具提供者可能有各自独特的“沟通”方式。,使得AI生态系统的不同部分能够顺畅连接和协作,从而实现了我们在现代AI应用中看到的复杂的工具使用能力。让我们来看看当你通过客户端应用向AI助手提问时,事情是如何运作的,比如问:“明天伦敦的天气怎么样?还有,最新的头条新闻是什么?但是,一个AI(比如驱动你最喜欢的聊天应用的那个)是如何可靠地连接并使用由不同开发者创建的各种工具呢?
2025-05-05 15:25:45
919
原创 【翻译、转载】【转载】LLM 的函数调用与 MCP
函数调用是一种机制,允许 LLM 根据用户输入识别它需要什么工具以及何时调用它。LLM 接收来自用户的提示。LLM 决定它需要的工具。程序员实现程序来接受来自 LLM 的工具调用请求,并准备一个函数调用。函数调用(带有参数)被传递给将处理实际执行的后端服务。让我们快速看看实际操作!首先,我们定义一个工具函数。它使用yfinance库来获取指定股票代码的最新收盘价:【参考】# (示例 Python 代码,定义 get_stock_price 函数)
2025-05-04 20:52:56
985
原创 【翻译、转载】【译文】模型上下文协议(Model Context Protocol, MCP)简介
其核心是,模型上下文协议是一种标准化的方式,让 AI 系统能够在对话期间访问外部信息源。可以将其想象为赋予 AI 模型在需要时**“查找信息或执行操作”**的能力,而不是仅仅依赖其预训练知识或当前的对话上下文。想象一下你正在与一个 AI 助手对话。没有 MCP,AI 只能利用其训练数据(有知识截止日期)以及你在当前对话中明确告知它的内容。有了 MCP,AI 可以动态地访问外部信息源——如数据库、API 或文档存储库——以提供更准确、最新和个性化的响应。
2025-05-04 20:17:51
682
原创 【翻译、转载】使用 LLM 构建 MCP
资料来源:本文仅仅是翻译。利用 Claude 等大型语言模型(LLM)加速您的 MCP 开发!本指南将帮助您使用 LLM 来构建自定义的模型上下文协议(Model Context Protocol, MCP)服务器和客户端。本教程将重点关注 Claude,但您也可以使用任何前沿的 LLM 来完成。
2025-05-04 20:08:11
581
原创 【翻译、转载】MCP 工具 (Tools)
MCP 中的工具允许服务器暴露可执行的函数,客户端可以调用这些函数,LLM 可以使用它们来执行操作。发现 (Discovery):客户端可以通过tools/list端点列出可用的工具。调用 (Invocation):使用tools/call端点调用工具,服务器执行请求的操作并返回结果。灵活性 (Flexibility):工具的范围可以从简单的计算到复杂的 API 交互。与资源 (resources)类似,工具由唯一的名称标识,并可以包含描述以指导其使用。
2025-05-04 15:44:01
926
原创 【翻译、转载】MCP 提示 (Prompts)
原文地址:https://modelcontextprotocol.io/docs/concepts/prompts#python提示 (Prompts) 使服务器能够定义可重用的提示模板和工作流,客户端可以轻松地将其呈现给用户和 LLM。它们提供了一种强大的方式来标准化和共享常见的 LLM 交互。提示被设计为用户控制 (user-controlled),这意味着它们从服务器暴露给客户端,目的是让用户能够显式选择它们来使用。MCP 中的提示是预定义的模板,可以:每个提示都通过以下结构定义:发现提示客户端
2025-05-04 15:37:17
1025
原创 【翻译、转载】MCP 资源 (Resources)
资源代表 MCP 服务器希望向客户端提供的任何类型的数据。文件内容数据库记录API 响应实时系统数据截图和图像日志文件等等每个资源都由一个唯一的 URI 标识,并且可以包含文本或二进制数据。
2025-05-04 15:28:24
811
原创 【翻译、转载】MCP 核心架构
模型上下文协议 (MCP) 构建在一个灵活、可扩展的架构之上,能够实现 LLM 应用程序与集成之间的无缝通信。本文档涵盖了核心的架构组件和概念。有关模型上下文协议消息格式的详细信息,请参阅规范文档。传输层处理客户端和服务器之间的实际通信。SDK 和应用程序可以定义自己的高于 -32000 的错误代码。协议层处理消息帧、请求/响应关联以及高级通信模式。initialize 请求 (协议版本, 能力)initialize 响应 (协议版本, 能力)了解 MCP 如何连接客户端、服务器和 LLM。
2025-05-04 15:10:27
1232
原创 【翻译、转载】mcp是什么
Block 和 Apollo 等早期采用者已将 MCP 集成到其系统中,而 Zed、Replit、Codeium 和 Sourcegraph 等开发工具公司正在利用 MCP 来增强其平台——使 AI 代理能够更好地检索相关信息,以进一步理解编码任务的上下文,并用更少的尝试生成更精细、功能更强的代码。每个新的数据源都需要自定义实现,这使得真正互联的系统难以扩展。无论您是 AI 工具开发者、希望利用现有数据的企业,还是探索前沿技术的早期采用者,我们都邀请您与我们一起构建具备上下文感知能力的 AI 的未来。
2025-05-04 14:57:01
594
原创 MATLAB图像加密案例
这个程序通过将图像分割成小块,然后根据一个密钥(用于随机数生成器种子)打乱这些块的顺序来实现加密。解密过程则使用相同的密钥恢复原始块顺序。这个程序提供了一个基础的、基于函数的图像置乱示例。你可以根据需要扩展它,例如增加图像填充、支持不同形状的块、或者结合其他简单的像素操作。下面是一个使用 MATLAB 编写的简单图像块置乱加密/解密程序,主要利用了函数来组织代码。
2025-05-02 21:06:51
1198
原创 图像加密算法概述
由于图像数据自身的特点(大容量、高冗余、强相关),直接应用传统文本加密算法可能效果不佳或效率低下。因此,研究者们提出了多种针对图像特性的加密方法,包括空间域置乱与扩散、变换域加密、基于混沌系统的方法、选择性加密等。评价一个图像加密算法需要综合考虑其安全性(密钥空间、敏感性、统计特性、抗攻击能力)和效率(速度、复杂度)。随着技术的发展,图像加密将在保证安全性的同时,更加注重效率、标准化以及与新兴技术的融合。对于初学者来说,理解图像数据的独特性以及各种加密策略的基本思想是入门的关键。
2025-05-01 22:29:32
128
原创 scale index的计算
需要注意,scale index的提出者分别构建了MATLAB和R语言的实现方式。但是,需要注意,经过我向作者求证。MATLAB编写的代码已经“过时了”,为了拥抱时代,作者构建了R语言包,名称为“wavScalogram”。
2024-12-10 12:51:35
474
原创 NIST SP 800-22随机数测试按照环境配置
安装成功、需要注意:可能没有列表,需要粘贴近距离服务器。基本是一路“下一页”即可。选择包时,需要选择关键的“make”等几个包。
2024-08-16 08:59:37
434
原创 Bifurcation Diagrams(分叉图)是什么
分叉图和吸引子从不同角度描述了混沌系统的特性。分叉图展示了系统在参数空间中的整体行为演变路径,而吸引子展示了系统在相空间中的具体轨迹和结构。通过分叉图,可以理解系统如何进入混沌状态;通过吸引子,可以理解系统在混沌状态下的复杂行为。两者相辅相成,共同帮助我们理解混沌系统的复杂性。
2024-08-01 10:56:12
962
原创 近似熵的含义
序列划分与模式定义给定一个时间序列 ( {x_1, x_2, \dots, x_N} ),定义长度为 ( m ) 的子序列(也称为嵌入维度):这些子序列代表了时间序列中相邻的模式。距离计算定义子序列之间的距离为Chebyshev距离(最大差距),即:相似模式比例设定一个公差 ( r ),计算距离小于 ( r ) 的模式对的比例:C_i^m® = \frac{\text{数量}{d[X_i^m, X_j^m] < r}}{N-m+1}
2024-07-30 11:11:04
1252
原创 加密溢出问题
今天编写程序,使用一个非常简单的对256取模的运算,但是总是得不到正确的结果。但是,如果进行加法运算,那这两个值超过255时,其值是255!例如,处理图像时,值的范围是【0,255】.后来发现,是数据的值的范围问题。异或等等运算都是没有问题的。大家可以测试如下的程序。
2024-07-28 20:39:54
212
原创 效率提升30倍
在使用MATLAB实现对图像的DNA编码程序时,开始使用的一种通用函数的形式,先把每次函数的名字取到,然后再调用函数。改变了方法,直接使用多分支Switch进行调用。后来,想到可能是因为这个问题导致了速度慢。结果速度提升了30倍。
2024-07-27 08:43:48
204
原创 MATLAB被360误杀的解决方案
前面误杀结果是缺少文件,重装MATLAB也不行。当时备份了“病毒”文件,结果备份的也被杀了。前面被误杀,今天又被误杀。这次,看到了提示额外小心。结果重装了操作系统。
2024-07-27 08:22:56
782
原创 MATLAB模拟数字签名过程
在 MATLAB 中实现数字签名和验证,我们使用 MATLAB 的包提供的功能。以下是一个示例代码,用于生成和验证数字签名。
2024-07-04 16:22:42
298
原创 FIPS PUB 196 ENTITY AUTHENTICATION USING PUBLIC KEY CRYPTOGRAPHY
The following mutual entity authentication protocol is based on Section 522. “Three passauthentication”, ofISO/IEC 9798-3. Certain authentication token fields and protocol steps arespecified in greater detail in this section than in ISO/IEC 9798-3. Eithe
2024-07-03 14:40:19
458
原创 【通俗易懂+案例】DH密钥交换算法
(1)Alice和Bob交换掩盖了他们各自私钥的公钥;(2)双方均使用对方的公钥和己方的私钥计算出共享密钥;(3)敌手通过观察公钥不能获得私钥的任何信息,更不能计算出共享密钥。
2024-06-25 08:06:44
408
原创 十个简单的Python类的例子
class Dog:# 使用类print(my_dog.name) # 输出: Buddyprint(my_dog.bark()) # 输出: Woof!
2024-05-20 09:29:55
442
原创 十个简单的Python类的例子
class Dog:# 使用类print(my_dog.name) # 输出: Buddyprint(my_dog.bark()) # 输出: Woof!
2024-05-13 07:47:46
825
原创 SSIM(Structural Similarity),结构相似性及MATLAB实现
我们先看下大多数我们看到的文献关于该指标的介绍:SSIM(结构相似性指标)是一种用于衡量两个图像相似度的指标,尤其是用于比较一幅图像的两个不同版本,如一幅原始图像与经过压缩或其他形式处理后的图像。它是由王周、Bovik等人于2004年提出的。SSIM的设计基于对图像结构信息的观察,认为人眼对图像的视觉质量感知与图像的结构信息(如亮度、对比度和结构)密切相关。
2024-05-10 15:54:39
1187
数字模板(每个数字十种不同的字体)
2021-08-13
randomForest
2021-08-08
Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerpri
2021-08-03
A Large-Scale Study of Fingerprint Matching Systems for Sensor Interoperability
2021-07-30
Presentazione MCC(Minutia Cylinder-Code: A New Representation and Matching Tech)
2021-07-30
Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerpri
2021-07-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人