UVaOJ-10539-Almost Prime Numbers 解题报告

博客讲述了如何解决UVa Online Judge上的10539题——几乎素数。博主分析了问题,指出这类数是除了自身以外只有一个素因子的数,例如4、8、9。由于问题涉及到的数值范围较大,博主采取了筛选10^6以内的素数,并将几乎素数存储、排序,通过二分查找来高效处理给定区间的方法。
摘要由CSDN通过智能技术生成

       筛素数好题。题意:几乎是素数的数是这样一种数,它不是素数,但是它只有一个素因子。比如:4,8,9等。现在给你一个区间,让你统计区间内几乎是素数的数的个数。


       我的解题思路:这个区间范围很大,右端点可以达到10的12次方。分析一下可以知道几乎是素数的数是素数的n次方(n > 2)。因此筛素数的范围到10的6次方就可以了。因为区间范围大,但是统计的数却不多,因此我们可以把最大范围内的几乎素数存起来,排序,然后根据输入的区间左右端点二分查找就可以了。


       我的解题代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>

using namespace std;

typedef long long Long;

const int N = 1000002;
const Long M = 1000000000001;

bool isprime[N];
Long primes[N], pn;
Long num[N], nn;
Long left, right;

void InitRead();

void DataProcess();

void FastSieve(int maxn);

int BinarySearch(Long key);

bool Mycmp(Long a, Long b)
{
    return a < b;
}

int main()
{
    int t;
    InitRead();
    scanf("%d", &t);
    while (t--)
    {
        DataProcess();
    }
    return 0;
}

void InitRead()
{
    memset(isprime, true, sizeof(isprime));
    isprime[0] = isprime[1] = false;
    pn = nn = 0;
    FastSieve(N-1);
    for (int i=0; i<pn; ++i)
    {
        Long temp = primes[i] * primes[i];
        while (temp < M)
        {
            num[nn++] = temp;
            temp *= primes[i];
        }
    }
    sort(num, num+nn, Mycmp);
    return;
}

void DataProcess()
{
    scanf("%lld %lld", &left, &right);
    int l = BinarySearch(left), r = BinarySearch(right);
    if (num[l] == left)
    {
        printf("%d\n", r - l + 1);
    }
    else
    {
        printf("%d\n", r - l);
    }
    return;
}

void FastSieve(int maxn)
{
    for (int i=2; i<=maxn; ++i)
    {
        if (isprime[i]) primes[pn++] = i;
        for (int j=0; j<pn; ++j)
        {
            if (i * primes[j] > maxn) break;
            isprime[i * primes[j]] = false;
            if (i % primes[j] == 0) break;
        }
    }
    return;
}

int BinarySearch(Long key)
{
    if (key < 4) return -1;
    int low = 0, high = nn - 1, mid;
    while (low <= high)
    {
        mid = (high + low) >> 1;
        if (num[mid] == key) return mid;
        if (num[mid] > key) high = mid - 1;
        else low = mid + 1;
    }
    return num[mid] < key ? mid : mid - 1;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值