UVaOJ 题解
文章平均质量分 73
剑紫青天
在校本科生,ACMer
展开
-
UVaOJ-11624-Fire! 解题报告
一道十分优美的搜索题,暴露了我对BFS了解的还不够。题意:Joe要逃离一个迷宫,迷宫中有地方起火了,在火开始燃烧的时候Joe也开始逃,火的蔓延方式与Joe的行动方式一样,都是1个单位时间可以往上下左右四个方向各走一格。另外,迷宫内有墙,Joe与火都无法穿墙。现在给你一个图,请问Joe能否从迷宫的边界处逃出而不被火烧到,如果能的话请输出最短的逃脱时间,不能的话输出“IMPOSSIBLE”。其中,‘F原创 2014-08-17 18:53:53 · 1312 阅读 · 0 评论 -
UVaOJ-11488-Hyper Prefix Sets 解题报告
典型的字典树题目,只是有所变型原创 2014-08-17 23:05:51 · 832 阅读 · 0 评论 -
UVaOJ-11992-Fast Matrix Operations 解题报告
这是一道原创 2014-09-30 11:16:10 · 775 阅读 · 0 评论 -
UVaOJ-11752-The Super Powers 解题报告
不错的思考题,可找规律。人生第一次真正意义上的写证明。题意:如果一个数是两个不同的数的幂,那么这个数就称之为超级幂,比如64 = 8^2 = 4^3。因此64是一个超级幂。没有输入,请输出0到2^64-1范围内的所有超级幂。 我的解题思路:首先要找出超级幂的规律,根据样例明显会看出来超级幂不能算本身的1次幂,我们试着把数都分解成幂形式来看(1特殊)。16 = 2^4 =原创 2015-01-26 17:46:07 · 883 阅读 · 0 评论 -
UVaOJ-11827-Maximum GCD 解题报告
求多个数最大GCD,数据小,优化无用武之地。题意:给你若干个整数,对任意两个整数的最大公约数求最大值并输出。 我的解题思路:首先给你n个测试样例,但是每个测试样例里面有多少个数不知道,所以这里要用字符串处理掉。数据不大,暴力应该也是可行的。如果测试样例的数据比较大的话可以这样优化,先给这一组数降序排序,然后开始从大到小枚举,如果枚举的数不大于当前已知的最大GCD,那么就可以原创 2015-01-21 11:49:13 · 772 阅读 · 0 评论 -
UVaOJ-10539-Almost Prime Numbers 解题报告
筛素数好题。题意:几乎是素数的数是这样一种数,它不是素数,但是它只有一个素因子。比如:4,8,9等。现在给你一个区间,让你统计区间内几乎是素数的数的个数。 我的解题思路:这个区间范围很大,右端点可以达到10的12次方。分析一下可以知道几乎是素数的数是素数的n次方(n > 2)。因此筛素数的范围到10的6次方就可以了。因为区间范围大,但是统计的数却不多,因此我们可以把最大范围原创 2015-01-21 14:19:23 · 790 阅读 · 0 评论 -
UVaOJ-10791-Minimum Sum LCM 解题报告
分解质因数题。题意:现在给你一个数,然后请你找到两个或两个以上的数,使得它们的最小公倍数是给你的这个数,要求你找到的几个数的和尽量小,输出这个和。 我的解题思路:看起来很难的样子,这里涉及到求最小公倍数的原理。在几个数里面求最小公倍数,要把这几个数都分解不同的质因数,将每一个质因数次数最大项相乘就得到了这几个数的最小公倍数。比如:求108,28和42的最小公倍数,108 =原创 2015-01-23 10:54:24 · 737 阅读 · 0 评论 -
UVaOJ-10168-Summation of Four Primes 解题报告
哥德巴赫猜想推广。题意:给一个数,如果它能被分解成四个素数的和,那么输出这四个素数,如果不能,输出指定信息。 我的解题思路:由于一个大于2的偶数能够被分解成两个素数的和,因此可以推出一个大于8的数必定能分解成4个素数的和。首先如果这个大于8的数是偶数,那么它能够被分解成两个偶数的和,再把这两个偶数根据哥德巴赫猜想分解,如果是奇数的话,那么它必定能分解成2,3和一个偶数的和,原创 2015-01-23 20:45:12 · 763 阅读 · 0 评论 -
UVaOJ-10200-Prime Time 解题报告
跟判断素数有关的题。题意:有这样一个公式,n^2 + n + 41,当0 39时这个公式的值有可能不是素数了,不过已知n 我的解题思路:反正n = 10000时公式的值还没有超过int范围,先将10002以内范围的素数都筛出来,然后用来判断区间内公式的值是否为素数,反正也就最多10000次判断,存储为前缀和的形式,最后根据输入的左右端点直接输出就行了。注意:比较坑的是四原创 2015-01-25 17:07:55 · 767 阅读 · 0 评论