集成算法概述

集成算法通过结合多个分类器来提高预测性能,包括并行的Bagging模型如随机森林,串联的Boosting模型,以及Stacking模型。随机森林通过构建多样性的树模型增加准确性,而Boosting则逐步优化弱分类器。
摘要由CSDN通过智能技术生成

        集成算法的基本思想:训练时用多种分类器一起完成同一份任务。

        测试时对待测试样本分别通过不同的分类器,汇总最后的结果。投票方式,可分为软投票和硬投票。

        集成算法一般有三种,分别是Bagging模型、Boosting模型和Stacking模型。

        Bagging模型:并行的训练一堆分类器(类似电路并联),典型代表是随机森林算法。

        随机森林的多样性,即构建的树模型之间存在一定差异。

        Boosting模型:提升算法(类似电路串联)

        Stacking模型:堆联

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值