逆元
在计算机里面为了存储数据于是我们定义了 int、long、long long、 _ _ 128、…还有小数float double long double ,但是都是有精度范围,因此催生出了大整数加减乘除的题目和求逆元的需求
大整数的题目比较入门,也是通过手动模拟就可以实现,这里不讲
逆元也比较入门 ,只是需要一点点基础知识(费马小定理(快速幂)或者 拓展欧几里得(模的性质))
概念
逆元,这里指的是分数(小数)对某个较大整数进行取模的运算
a b % n \frac{a}{b} \% n ba%n
一般的取模运算,就是 整数 % 整数 ,像 5 % 3 = 2 , 14 % 5 = 4 {5\%3=2} , {14 \% 5 = 4} 5%3=2,14%5=4
而分数,小数的取模运算,比起整数来说还有点难以理解 比如
3
4
%
1000000007
=
750000006
1
1
%
1000000007
=
1
{\frac{3}{4}\%1000000007=750000006} \\ {\frac{1}{1}\%1000000007=1}
43%1000000007=75000000611%1000000007=1
而对于分数意义下的取模运算,可以有以下理解
通俗的讲,逆元可以看做一个数的倒数的整数形式,但是一个数的逆元在不同的 \\% 意义下是不一样的。
a × x ≡ 1 a\times x\equiv1 \\% n → a\times \frac{1}{a}\equiv1 \\% n a×x≡1
这个方程便是逆元的真正定义, x x x 的解即代表 a a a 在 % n \% n %n 意义下的逆元,通俗的讲:此时的 x x x 就相当于 a a a 的倒数,这样 a × x a\times x a×x 便会等于1,在 % n \%n %n 意义下余数必定为一。当然这个式子要建立在 a a a 与 n n n 互质的基础上
可是逆元有什么用呢?直接用倒数不行吗?这是因为我们发现一个分数 % \% % 一个整数时是不能直接模运算的,但是可以进行乘法运算,我们就要用到逆元(一个数倒数的整数形式)
就像:
a
b
%
n
̸
=
a
%
n
b
%
n
%
n
\frac{a}{b}\% n \not =\frac{a\% n}{b\% n}\% n
ba%n̸=b%na%n%n
但是:
a
b
%
n
=
(
a
×
b
−
1
)
%
n
\frac{a}{b}\% n=(a\times b^{-1})\% n
ba%n=(a×b−1)%n
所以当除运算碰上我们的模运算时,我们就需要 \\% 模数 意义下的逆元了
P.S.
1.若n|(a-b),则a≡b (% n)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)
2.(a % n)=(b % n)意味a≡b (% n)
3.对称性:a≡b (% n)等价于b≡a (% n)
4.传递性:若a≡b (% n)且b≡c (% n) ,则a≡c (% n)
( a + b ) % n = ( a % n + b % n ) % n ( 1 ) ( a − b ) % n = ( a % n − b % n + n ) % n ( 2 ) ( a ∗ b ) % n = ( a % n ∗ b % n ) % n ( 3 ) a b % n = ( ( a % n ) b ) % n ( 4 ) (a + b) \% n = (a \% n + b \% n) \% n (1)\\ (a - b) \% n = (a \% n - b \% n + n ) \% n (2)\\ (a * b) \% n = (a \% n * b \% n) \% n (3)\\ a ^ b \% n = ((a \% n)^b) \% n (4)\\ (a+b)%n=(a%n+b%n)%n(1)(a−b)%n=(a%n−b%n+n)%n(2)(a∗b)%n=(a%n∗b%n)%n(3)ab%n=((a%n)b)%n(4)
求法
一、拓展欧几里得求法
1.同时存在两个整数 x 1 , y 1 x_1, y_1 x1,y1 使得: x 1 × a + y 1 × b = g c d ( a , b ) x_1 \times a + y_1 \times b = gcd(a,b) x1×a+y1×b=gcd(a,b)
2.同理,同时存在两个整数 x 2 , y 2 x_2 , y_2 x2,y2 使得: x 2 × b + y 2 × ( a % b ) = g c d ( b , a % b ) x_2 \times b + y_2 \times ( a \% b) = gcd ( b , a \% b ) x2×b+y2×(a%b)=gcd(b,a%b)
根据 gcd 的性质,上述两个等式的右半部分相同,同理它们的左半部分也相同
易得
1. x 1 × a + y 1 × b = x 2 × b + y 2 × ( a % b ) x_1\times a+y_1\times b=x_2\times b+y_2\times (a\% b) x1×a+y1×b=x2×b+y2×(a%b)
2. x 1 × a + y 1 × b = x 2 × b + y 2 × ( a − a b × b ) x_1\times a+y_1\times b=x_2\times b+y_2\times (a-\frac{a}{b}\times b) x1×a+y1×b=x2×b+y2×(a−ba×b)
3. x 1 × a + y 1 × b = y 2 × a + ( x 2 − y 2 × a b ) × b x_1\times a+y_1\times b=y_2\times a+(x_2-y_2\times \frac{a}{b})\times b x1×a+y1×b=y2×a+(x2−y2×ba)×b
4. y 1 = x 2 − y 2 × a b y_1=x_2-y_2\times \frac{a}{b} y1=x2−y2×ba
所以我们根据 x 2 x_2 x2 和 y 2 y_2 y2 就能求出 x 1 x_1 x1 和 y 1 y_1 y1 。而众所周知的, g c d gcd gcd 的解就是 b = = 0 b==0 b==0 的时候,这时我们的 x = 1 x=1 x=1 ,而因为 b = = 0 b==0 b==0 ,所以我们的 y y y 随便取一个就行(好像大多数人用0),然后我们在回溯的时候,不断往前推我们的 x x x 和 y y y ,直到得出我们最初的那一组解。(这其实就是一个构造的过程)
然后,我们发现只有当我们的 a a a 与 b b b 互质的时候即 $ gcd(a,b)=1 $ 时,这个二元一次方程变成了: x 1 × a + y 1 × b = 1 x_1\times a + y_1 \times b = 1 x1×a+y1×b=1
等同于 x 1 × a = 1 ( % b ) x_1\times a=1(\% b) x1×a=1(%b) 或 y 1 × b = 1 ( % a ) y_1\times b=1(\% a) y1×b=1(%a)
而这就相当于我们逆元的定义式.我们再用上述方法将 x 1 x_1 x1 和 y 1 y_1 y1 求出来,就是逆元
int exgcd(int a,int b,int &x,int &y){
if(b==0)return x=1,y=0,a;
int d=exgcd(b,a%b,y,x);
y-=(a/b)*x; return d;
}
#include<stdio.h>
#define ll long long
ll gcd(ll a,ll b,ll &d,ll& x,ll& y){
if(!b){
d=a;
x=1;
y=0;
return x;
}
else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
return x;
}
int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
x=gcd(a,b,d,x,y);
printf("a:%lld->x:%lld\n",a,x);
}
return 0;
}
二、费马小定理求法
费马小定理如下:
若整数
a
a
a与一个质数
n
n
n互质,则有 :
a
p
−
1
≡
1
(
%
n
)
a^{p-1} \equiv 1 (\%n)
ap−1≡1(%n)
这就是费马小定理,看起来和逆元毫无关系,但是如果稍微修改一下:
a
×
a
p
−
2
≡
1
(
%
n
)
a \times a^{p-2} \equiv 1 (\%n)
a×ap−2≡1(%n)
就可以发现和逆元的定义惊人的相似,因此快速幂上场
ll quick_multiply(ll x){//求x在%mod意义下的逆元
int times=n-2;ll ans=1;
while(times){
if(times&1)ans=ans*x%mod;
x=x*x%mod; times>>=1;
}
return ans;
}