剑指offer-重建二叉树 由前序和中序遍历序列建树

重建二叉树
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

public class Solution {
    public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
        TreeNode root=reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);
        return root;
    }
    private TreeNode reConstructBinaryTree(int [] pre,int startPre,int endPre,int [] in,int startIn,int endIn) {

        if(startPre>endPre||startIn>endIn)
            return null;
        TreeNode root=new TreeNode(pre[startPre]);

        for(int i=startIn;i<=endIn;i++)
            if(in[i]==pre[startPre]){
                root.left=reConstructBinaryTree(pre,startPre+1,startPre+i-startIn,in,startIn,i-1);
                root.right=reConstructBinaryTree(pre,i-startIn+startPre+1,endPre,in,i+1,endIn);
            }

        return root;
    }
}

下面这种方式提示栈溢出
Exception in thread “main” java.lang.StackOverflowError
at BinaryTreeSearch.reConstructBinaryTree(BinaryTreeSearch.java:49)

public TreeNode reConstructBinaryTree(int [] pre,int [] in) {       
        if(pre == null || pre.length == 0)
        {
            return null;
        }
        int len = pre.length; 
        //前序遍历的第一个元素即根节点
        TreeNode root = new TreeNode(pre[0]);
        //分别用于用于存储左子树和右子数的前序遍历和中序遍历序列             
        int[] lpre= new int[len];
        int[] lin = new int[len];
        int [] rpre=new int[len];
        int[] rin=new int[len];

        //中序遍历的根所在的位置middle
        int middle = 0;

        for(int i =0;i<len;i++)
        {
            if(in[i]==pre[0])
            {
                middle = i;
                break;
            }
        }
        //左子树 
        for(int i = 0;i<middle;i++)
        {
            lpre[i] = pre[i+1];
            lin[i] = in[i];
        }

        //右子树 
        for(int i = middle+1;i<len;i++)
        {
            rpre[i] = pre[i];
            lin[i] = in[i];
        }
        root.left = reConstructBinaryTree(lpre,lin);
        root.right = reConstructBinaryTree(rpre,rin);
        return root;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值