重建二叉树
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
TreeNode root=reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);
return root;
}
private TreeNode reConstructBinaryTree(int [] pre,int startPre,int endPre,int [] in,int startIn,int endIn) {
if(startPre>endPre||startIn>endIn)
return null;
TreeNode root=new TreeNode(pre[startPre]);
for(int i=startIn;i<=endIn;i++)
if(in[i]==pre[startPre]){
root.left=reConstructBinaryTree(pre,startPre+1,startPre+i-startIn,in,startIn,i-1);
root.right=reConstructBinaryTree(pre,i-startIn+startPre+1,endPre,in,i+1,endIn);
}
return root;
}
}
下面这种方式提示栈溢出
Exception in thread “main” java.lang.StackOverflowError
at BinaryTreeSearch.reConstructBinaryTree(BinaryTreeSearch.java:49)
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre == null || pre.length == 0)
{
return null;
}
int len = pre.length;
//前序遍历的第一个元素即根节点
TreeNode root = new TreeNode(pre[0]);
//分别用于用于存储左子树和右子数的前序遍历和中序遍历序列
int[] lpre= new int[len];
int[] lin = new int[len];
int [] rpre=new int[len];
int[] rin=new int[len];
//中序遍历的根所在的位置middle
int middle = 0;
for(int i =0;i<len;i++)
{
if(in[i]==pre[0])
{
middle = i;
break;
}
}
//左子树
for(int i = 0;i<middle;i++)
{
lpre[i] = pre[i+1];
lin[i] = in[i];
}
//右子树
for(int i = middle+1;i<len;i++)
{
rpre[i] = pre[i];
lin[i] = in[i];
}
root.left = reConstructBinaryTree(lpre,lin);
root.right = reConstructBinaryTree(rpre,rin);
return root;
}