谈起卷积分当然要先说说冲击函数----这个倒立的小蝌蚪,卷积其实就是为它诞生的。“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”。在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是“卷积”这个数学怪物就这样诞生了。说它是数学怪物是因为追求完美的数学家始终在头脑中转不过来弯,一个能瘦到无限小的家伙,竟能在积分中占有一席之地,必须将这个细高挑清除数学界。但物理学家、工程师们确非常喜欢它,因为它解决了很多当时数学家解决不了的实际问题。最终追求完美的数学家终于想通了,数学是来源于实际的,并最终服务于实际才是真。于是,他们为它量身定做了一套运作规律。于是,卷积分产生了。
目前,傅立叶变换最重要的应用之一就是可以将卷积方程变成两个函数的乘积形式去求解。卷积分是积分方程家族的一名重要成员。
卷积是一种积分运算,它可以用来描述线性时不变系统的输入和输出的关系:即输出可以通过输入和一个表征系统特性的函数(冲激响应函数)进行卷积运算得到。
以下用$符号表示从负无穷大到正无穷大的积分。
一维卷积: y(t)=g(k)*x(k)=$g(k)x(t-k)
先把函数x(k)相对于原点反折,然后向右移动距离t,然后两个函数相乘再积分,就得到了在t处的输出。对每个t值重复上述过程,就得到了输出曲线。
二维卷积: h(x,y)=f(u,v)*g(u,v)=$$f(u,v)g(x-u,y-v)
先将g(u,v)绕其原点旋转180度,然后平移其原点,u轴上像上平移x, v轴上像上平移y。然后两个函数相乘积分,得到一个点处的输出。
图像处理中的卷积与上面的定义稍微有一点不同。用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到了该点的卷积值。对图像上的每个点都这样处理。由于大多数模板都是对称的,所以模板不旋转。
把一个点的像素值用它周围的点的像素值的加权平均代替。
卷积实质上是对信号进行滤波。
从数学上来说卷积就是定义两个函数的一种乘法。对离散序列来说就是两个多项式的乘法。
卷积是一种积分运算,用来求两个曲线重叠区域面积。可以看作加权求和,可以用来消除噪声、特征增强。