卷积神经网络学习笔记(花书总结.LIMU)

卷积神经网络学习笔记

一.

1.卷积神经网络可以很好的处理图像数据。
2.CNN在获得精确模型的采样效率和计算上具有很高的效率,因为卷积神经网络需要的参数比感知机少,而且卷积神经网络很容易用GPU并行计算。
3.一维序列结构的任务(音频,文本和时间序列分析),通常采用RNN,对CNN进行一些调整,也可以在结构数据和推荐系统中发挥作用。
4.CNN主干基本元素包括卷积层本身,填充(padding)和步幅,用于在相邻空间区域聚集信息的池化层(pooling),每层中多通道(channel)的使用。

二.

1.多层感知机十分适合处理表格数据,表格数据中的每行对应每个样本,每列分别对应每个特征。
2.多层感知机在处理百万级数据规模时略显笨拙
3.CNN是机器学习利用自然图像中一些已知结构的创造性方法。
4.在检测一张图片中的物体时,应遵循无论采取哪一种方法都应该和物体的位置无关。
5.若有x个相同的物体随机分别于一张图片的任意位置,我们可以将图片分成n个区域,为每个区域出现该物体的可能性打分,(物体的样子并不取决于位置——"空间不变性")
6.卷积神经网络正是将“空间不变性”的这一概念系统化,用较少的参数来学习有用的特征。
7.适合计算机视觉的神经网络结构:(1)平移不变性:不管出现在图像中的哪个位置,神经网络的底层应该对相同的图像区域做出类似的响应。 (2)局部性:神经网络的底层应该只探索输入图像中的局部区域,而不考虑图像远处区域的内容,这就是“局部性”原则,最终,这些局部特征可以融合贯通,在整个图像级别上做出预测。
8.多层感知机中输入层与隐藏层均有空间结构。
9.当图像处理的局部区域很小时,卷积神经网络通常与多层感知机的训练差异可能是巨大的:
以前,多层感知机可 能需要数⼗亿个参数来表⽰,而现在卷积神经⽹络通常只需要⼏百个参数,而且不需要改变输⼊或隐藏表⽰ 的维数。参数量的这⼀减少所付出的代价就是,我们的特征现在必须是平移不变的,且每⼀层只能包含局部 的信息。以上所有的权重学习都依赖于归纳偏置,当这种偏置与实际情况相符时,我们就可以得到有效的模 型,这些模型能很好地推⼴到不可⻅的数据中。但如果这些假设与实际情况不符,⽐如当图像不满⾜平移不 变时,我们的模型可能难以拟合。
10.图像是由高度,宽度和颜色组成的三维张量。输入图像是三维的,我们隐藏层也采用三维张量,换句话说,对于每一个空间位置,采用一组而不是一个隐藏表示。这样⼀组隐藏表⽰可以想象成⼀些互相堆叠的⼆维⽹格。因此,我们 可以把隐藏表⽰想象为⼀系列具有⼆维张量的通道,这些通道有时也被称为特征映射,因为每个通道都向后续层提供⼀组空间化的学习特征。

三.

1.卷积神经网络的设计是用于探索图像数据的。
2.严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是 互相关运算 (cross-correlation),而不是卷积运算。在卷积层中,输⼊张量和核张量通过互相关运算产⽣输出张量。
3.输入的大小为h,w,卷积核的大小为a,b 则输出大小为(h-a+1),(w-b+1)。
4.卷积层对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出。
5.在学习卷积核中,由于卷积核是从数据中学习到的,因此无论这些层执行严格的卷积运算还是互相关运算,卷积层的输出都不会受到影响。
6.输出的卷积层有时被称为特征映射,因为它可以被视为一个输入映射到下一层的空间维度的转换器。
7.在CNN中,对于某⼀层的任意元素 x ,其感受野(Receptive Field) 是指在前向传播期间可能影响 x 计算的所有元素(来⾃所有先前层)。且感受野的覆盖率可能大于某层输入的实际区域大小。当一个特征图中的任意元素需要检测更广区域的输入特征时,我们可以构建一个更深的网络。

四.

1.卷积的输出形状取决于输⼊形状和卷积核的形状。
2.由于卷积核的宽度和高度通常大于1,最终得到的输出远小于输入大小。从而原始图像的边界丢失了许多有用信息,而填充是解决此问题最有效的方法
3.有时,我们可能希望⼤ 幅降低图像的宽度和⾼度。例如,如果我们发现原始的输⼊分辨率⼗分冗余。步幅则可以在这类情况下提供帮助。
4.卷积神经⽹络中卷积核的⾼度和宽度通常为奇数,例如 1、3、5 或 7。选择奇数的好处是,保持空间维度的 同时,我们可以在顶部和底部填充相同数量的⾏,在左侧和右侧填充相同数量的列。

五.

1.当输⼊包含多个通道时,需要构造⼀个与输⼊数据具有相同输⼊通道数⽬的卷积核,以便与输⼊数据进⾏互 相关运算。
2.(1x1)的卷积层,不识别空间模式,只是融合通道。

六.

1.通常当我们处理图像时,我们希望逐渐降低隐藏表⽰的空间分辨率,聚集信息,这样的随着我们在神经⽹络 中层叠的上升,每个神经元对其敏感的感受野(输⼊)就越⼤。
2.而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含⼀只猫呢?”),所以我们最后⼀ 层的神经元应该对整个输⼊的全局敏感。通过逐渐聚合信息,⽣成越来越粗糙的映射,最终实现学习全局表⽰的⽬标,同时将卷积图层的所有优势保留在中间层。
3.池化层具有双重目标:降低卷积层对位置的敏感性,同时降低对空间降采样表示得敏感性。
4.最大池化层与平均池化层。
5.与卷积层一样,池化层也可以改变输出形状。
6.在默认情况下,深度学习框架中的步幅与池化窗口的大小相同。但填充与步幅可以手动设定。
7.在处理多通道输⼊数据时,池化层在每个输⼊通道上单独运算,而不是像卷积层⼀样在通道上对输⼊进⾏汇 总。这意味着池化层的输出通道数与输⼊通道数相同。

七.

1.LeNet由两个部分组成:(1)卷积编码器:由两个卷积层组成。(2)全连接层密集快:由三个全连接层组成。

2.卷积的输出形状由批量大小,通道数,高度,宽度决定。
3.为了将卷积块的输出传递给稠密块,我们必须在小批量中展开每个样本。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值