例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Sample Input
kitten
sitting
Sample Output
3
思路
子问题: 用dp[x][y]表示编辑a串前x位和b串前y位的编辑距离2.
状态转移:(1)当第x位和第y位对齐时
(1.1)若a[x]==b[y]时,此时不需要编辑,dp[x][y] = dp[x-1][y-1]
(1.2)当a[x] != b[y]时,此时需要编辑,dp[x][y] = dp[x-1][y-1] + 1
(2)当第x位和第y位不对齐时
(2.1)当第x位和第y-1位对齐时,此时需要编辑,dp[x][y] = dp[x][y-1] + 1
(2.2)当第x-1位和第y位对其时。此时需要编辑,dp[x][y] = dp[x-1][y] + 1
3.自底向上求解:
初始化dp for (int i = 1;i <= lena;i++){
dp[i][0] = i;
}
for (int i = 0;i <= lenb;i++){
dp[0][i] = i;
}
求解: for (int i = 1;i <= lena;i++){
for (int j = 1;j <= lenb;j++){
dp[i][j] = min(dp[x][y] + (a[i-1] != b[j-1]),min(dp[x-1][y],dp[x][y-1]) + 1 );
}
}
AC代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<string>
#include<queue>
#include<set>
#include<vector>
#include<map>
#include<stack>
#include<cstdlib>
using namespace std;
typedef long long ll;
char a[1005],b[1005],ans[1005];
int dp[1005][1055];
int Min(int a,int b,int c){
return min(a,min(b,c));
}
int main()
{
scanf("%s%s",a,b);
int la=strlen(a);
int lb=strlen(b);
for(int i=0;i<=la;i++)
dp[i][0]=i;
for(int i=0;i<=lb;i++)
dp[0][i]=i;
for(int i=1;i<=la;i++){
for(int j=1;j<=lb;j++){
dp[i][j]=Min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+(a[i-1]==b[j-1]?0:1));
}
}
printf("%d\n",dp[la][lb]);
return 0;
}