编辑距离 (dp)

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Sample Input
kitten
sitting
Sample Output

3



思路

子问题: 用dp[x][y]表示编辑a串前x位和b串前y位的编辑距离2.

状态转移:(1)当第x位和第y位对齐时

                        (1.1)若a[x]==b[y]时,此时不需要编辑,dp[x][y] = dp[x-1][y-1]

                        (1.2)当a[x] != b[y]时,此时需要编辑,dp[x][y] = dp[x-1][y-1] + 1

                    (2)当第x位和第y位不对齐时

                       (2.1)当第x位和第y-1位对齐时,此时需要编辑,dp[x][y] = dp[x][y-1] + 1

                       (2.2)当第x-1位和第y位对其时。此时需要编辑,dp[x][y] = dp[x-1][y] + 1

     3.自底向上求解:

 初始化dp  for (int i = 1;i <= lena;i++){

                                        dp[i][0] = i;

                                 }

                                  for (int i = 0;i <= lenb;i++){

                                        dp[0][i] = i;

                                 }

求解:    for (int i = 1;i <= lena;i++){

                      for (int j = 1;j <= lenb;j++){

                           dp[i][j] = min(dp[x][y] + (a[i-1] != b[j-1]),min(dp[x-1][y],dp[x][y-1]) + 1 );

                     }

                }

AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<string>
#include<queue>
#include<set>
#include<vector>
#include<map>
#include<stack>
#include<cstdlib>
using namespace std;
typedef long long ll;
char a[1005],b[1005],ans[1005];
int dp[1005][1055];
int Min(int a,int b,int c){
	return min(a,min(b,c));
}
int main()
{
    scanf("%s%s",a,b);
    int la=strlen(a);
    int lb=strlen(b);
    for(int i=0;i<=la;i++)
        dp[i][0]=i;
    for(int i=0;i<=lb;i++)
        dp[0][i]=i;
    for(int i=1;i<=la;i++){
        for(int j=1;j<=lb;j++){
            dp[i][j]=Min(dp[i-1][j]+1,dp[i][j-1]+1,dp[i-1][j-1]+(a[i-1]==b[j-1]?0:1));
        }
    }
    printf("%d\n",dp[la][lb]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值