选择排序
在数组中找到最小的元素,将其和第一个元素交换位置。再从剩下的元素中找到最小的元素,和第二个元素交换位置。如此往复,直到将整个数组排序,这种方法叫选择排序,因为它在不断地选择元素之间的最小者。
每次交换都排定一个元素,所以交换的总次数为N。所以算法的时间效率取决于比较的次数
class solution
{public:
void sort(int compare[]){
int N = compare.size();
for(int i = 0; i<N; i++)
{
int min = compare[i];
int pos = i;
for(int j = i+1; j<N; j++)
{
if(compare[j]<min){
min=compare[j];
pos=j;
}
}
swap(compare[i],compare[pos]);
}
};
1.数据移动是最少的。2.运行时间和输入无关
1.只需要交换N次,和数组大小成线性,其余任何算法都没有这个特征
2.有序数组和无序数组的时间一样,因为照样要比较所有的,照样要交换。
插入排序
通常人们整理牌的方法是一张一张来,将每一张牌插入到其他有序的牌中的适当位置。在计算机的视线中,为了给要插入的元素腾出空间,需要在插入之前将其余元素往右移动一位。这种算法叫插入排序
与选择排序一样,当前索引左边的元素都是有序的,但它们的最终位置还不确定。
与选择不同的是,插入排序所需的时间取决于输入中元素的初始顺序。例如对一个很大且其中的元素已经有序or接近有序的数组进行排序将会比对随机顺序or逆序的排序要快很多。
class solution
{public:
void sort(int compare[]){
int N = compare.size();
for(int i = 1; i<N; i++)
{
for(int j=i;j>0 && compare[j]<compare[j-1];j--)
{
swap(compare[j],compare[j-1];
}
}
}
如果你对一个有序数组进行插排,那么它立即能够发现每个元素已经在合适的位置了,也就不会进入内层for,那它的运行时间也是线性的(而选择排序仍旧是平方级的)。
总的来说,插入排序对于部分有序的数组十分搞笑,也很适合小规模数组
比较前两种数组
对于随机排序数组,两者的运行时间都是平方级别的,两者之比只是一个较小的常数。
希尔排序
SHELLSORT是基于插入排序的快速的排序算法。因为插排对于大规模乱序数组很慢,只会交换相邻的元素,因此元素只能一点一点地从数组的一端移动到另一端。
希尔排序为了加快速度简单的改进了插入排序,交换不相邻元素以对数组的局部进行排序,并最终用插排将局部有序的数组排序
希尔排序的思想是使数组中任意间隔为h的元素都是有序的。希尔排序的实现就是转化为类似于插入排序但使用不同增量的过程
class solution
{public:
void sort(int compare[]){
int N = compare.size();
int h = 1;
while (h < N/3) h = 3*h + 1;//1,4,13,40,121...
while(h >= 1){
//将数组变为h有序
for (int i = h; i < N; i++){
//将第i位插入到i-h,i-2*h,i-3*h...中,如果比i-h小的话,那么
//就交换,并把j-h,继续比较,直到比i-nh大,那么就是部分有序
for(int j = i; j >= h && compare[j] < compare[j-h]
; j-=h)
swap(compare[j],compare[j-h];
}
h = h/3;
}
}
}
如何选择递增序列?不简单,暂且用这个便可。
与其他算法比较
- 处理大数据时,比不上快排
- 希尔排序比插排比较次数和移动次数都少很多次,效率更高
- 插排稳定,因为必须严格大于才交换,希尔排序不稳定