暴力也挺快的,但是最好还是用dp
dp[i]代表的是以nums[i]为结尾可以有几个等差数列
如果nums[i]-nums[i-1] == nums[i-1]-nums[i-2],那么dp[i]就等于dp[i-1]+1
状态转移方程要注意如果dp[i-1]为0,那么一直到dp[i]相当于有一个长度为3的等差数列了.
如果dp[i-1]为1,那么证明到dp[i]有长度为4的等差数列,长度为4的等差数列有3种情况,所以dp[i]=2,加上dp[i-1]=1,就是三种情况
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& nums) {
//至少3个数字才可以作为等差数列
//暴力求解试试看,从0到n-3出发,如果当前不满足了,就break,如果满足了而且差值>=3就+1
// int res = 0;
// if(nums.size() < 3) return res;
// for(int i = 0; i < nums.size()-2; ++i){
// int cha = nums[i+1] - nums[i];
// for(int j = i+1; j < nums.size(); ++j){
// if(nums[j]-nums[j-1] == cha){
// if(j-i>=2) res++;
// }
// else break;
// }
// }
// return res;
//试试用dp做
//dp[i]代表的是以nums[i]为结尾可以有几个等差数列
//如果nums[i]-nums[i-1] == nums[i-1]-nums[i-2],那么dp[i]就等于dp[i-1]+1
//状态转移方程要注意如果dp[i-1]为0,那么一直到dp[i]相当于有一个长度为3的等差数列了.
//如果dp[i-1]为1,那么证明到dp[i]有长度为4的等差数列,长度为4的等差数列有3种情况,所以dp[i]=2,加上dp[i-1]=1,就是三种情况
//所以只需要记录dp[i-1]即可
if(nums.size() < 3) return 0;
int dp = 0;
int res = 0;
for(int i = 2; i < nums.size(); ++i){
if(nums[i]-nums[i-1] == nums[i-1]-nums[i-2]){
dp = dp+1;
}
else{
dp = 0;
}
res += dp;
}
return res;
}
};