Jzoj5600 Arg

该博客探讨了一道动态规划题目,涉及序列A的最长递增子序列(LIS)计数。文章提出了两种方法来定义状态,并详细解释了如何通过状态压缩和三进制表示简化问题,最终实现解题策略。
摘要由CSDN通过智能技术生成

给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS.

dp套dp好题!

我们先要考虑怎么搞一个状态出来

考虑做lis的两种方法:

1.设f[i]表示做到i的最长子序列长度

2.设f[i]表示长度为i的上升子序列最后那个数最小是多少

第一种方式不好设状态,我们考虑第二种

显然,如果知道f里有哪些数字,就可以还原f

那么我们设一个状态f[S][F]表示现在原来的序列中已经用了S这些数字,f数组中的数为F的方案数

考虑转移,显然有2种方式:
1.向S中添加一个不在A中的元素,这种情况直接转就可以了

2.向S中添加一个在A中的元素,这个时候要考虑顺序,如果A[1..j]都在F中出现过,那么我们可以添加的元素就是A[j+1]

最后答案就是∑ f[S][F] 其中S为全集,F的集合大小为A的长度

这样不能满分,考虑简化状态,由于F∈ S,所以这个状态可以用3进制表示,这样就可以通过了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值