【技术文档】视频雨条纹去除方法汇总~持续更新

本文汇总了机器视觉领域的视频雨条纹去除策略,包括物理建模、稀疏编码和机器学习方法,针对IEEE、Elsevier和Springer期刊/会议论文,探讨了雨滴检测与去除技术,提升户外监控和智能交通系统的视觉质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

视频雨条纹去除方法汇总

本贴是在研究 机器视觉领域_视频除雨除雾 的一个记录贴,用于分享读文献的心得&总结,本文将持续更新~


提示:
(1)文章一般会按照自己的分类进行【】提示
(2)解析的文章一般会附带DOI号or链接便于读者快速定位。


前言

降雨天气往往导致监控视频质量下降,会使图像背景产生崎变现象。而远处的雨水条纹累积会产生类似于雾或霾的大气遮蔽效应,近处的条纹会产生高光现象,遮挡背景。附着在挡风玻璃或窗玻璃上的雨滴会显着降低场景的能见度。因此,建模、检测和去除雨滴将有利于许多计算机视觉应用,特别是户外监控系统和智能车辆系统。为了改善恶劣天气条件下智能交通和安全防范等领域中视频图像的质量,视频图像増强处理成为当今机器视觉领域研究的热点,


一、IEEE文章

2.1 期刊论文

2016 TPAMI:Adherent Raindrop Modeling, Detection and Removal in Video.

【数学方法】使用物理定律对附着的雨滴进行建模->>>根据这些模型结合输入视频的运动和强度时间导数来检测雨滴->>>检测到雨滴后,根据雨滴的某些区域完全遮挡场景。核心思想:利用雨滴的局部时空导数

2016 Journal of Imaging Science and Technology:Rain Removal via Shrinkage-Based Sparse Coding and Learned Rain Dictionary

【机器学习方法】作者提出了一种基于单幅图​​像稀疏编码收缩的去雨模型。首先利用学习到的雨字典生成输入雨图像和重建雨图像之间的误差图->>>然后基于该误差图,联合使用rainnon-rain字典的稀疏编码来表示物体的图像结构,避免在non-rain区域出现边缘伪影->>>将与雨和非雨字典中高度相关的信号原子相对应的稀疏代码联合收缩以改善雨结构的去除。效果: 提出的基于收缩的稀疏编码可以保留图像结构,避免非雨区的边缘伪影,并且可以去除雨区的雨结构。
核心思想:提出了一种缩小稀疏代码的新方法,防止在非雨区产生不想要的边缘伪影和细节丢失

2.2 会议论文

二、Elsevier文章

三、Springer文章

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值