【论文精读】| KBS2023-TMBL-多模态情感分析系列文章解读

一. KBS2023-TMBL-用于多模态情感分析的极向量和强度向量混合器模型

1 Abstract

多模态情感分析是人机交互研究的重要方向,它可以通过同时分析文本、视频和声音特征来准确识别个体的情绪状态。尽管当前的情绪识别算法使用多模态融合策略表现良好,但仍然存在两个关键挑战。第一个挑战是在融合之前有效提取模态不变和模态特定的特征,这需要不同模态之间的深层特征交互。第二个挑战涉及区分模态特征之间的高级语义关系的能力。为了解决这些问题,我们提出了一种新的模态绑定学习框架,并重新设计了 Transformer 模型的内部结构。我们提出的模态绑定学习模型通过结合双模态和三模态绑定机制解决了第一个挑战。这些机制分别处理模态特定和模态不变的特征,并促进跨模态交互。此外,我们通过在变压器结构的前馈层和注意层中引入细粒度卷积模块来增强特征交互。为了解决第二个问题,我们分别引入了 CLS 和PE特征向量来表示模态不变和特定模态特征。我们使用相似性损失和相异性损失来支持模型收敛。在广泛使用的 MOSI 和 MOSEI 数据集上的实验表明,我们提出的方法优于最先进的多模态情感分类方法,证实了其有效性和优越性。源代码 可以在 https://github.com/JackAILab/TMBL 找到。

1.1 Motivation

多模态情感分析旨在判断互联网用户在各种社交媒体平台上上传的多模态数据的情感。

(1)然而,一方面,现有研究侧重于文本、音频和视觉等多模态数据的融合机制,而忽略了文本与音频、文本与视觉的相似性以及音频与视觉的异质性

### 关于多模态情感分析的英文综述文献 对于多模态情感分析的研究,该领域关注如何通过融合来自不同模式的数据(如文本、音频和视频)来提高情感识别的效果。尽管提供的引用材料未直接涉及此主题,但可以推荐一些专门针对多模态情感分析的综述论文。 #### 推荐综述文献: 1. **Multimodal Sentiment Analysis: A Survey** 这篇综述全面总结了近年来多模态情感分析的发展状况和技术进展。文章探讨了多种数据源之间的交互作用及其对情绪状态的影响机制,并讨论了几种主要的方法论框架以及面临的挑战[^5]。 2. **A Comprehensive Review on Multimodal Emotion Recognition Systems** 此文献提供了有关跨媒体情绪理解系统的广泛回顾,涵盖了从特征提取到模型训练等多个方面。特别强调了深度学习技术在此类任务中的应用实例和发展趋势[^6]。 3. **Deep Learning Approaches for Multimodal Sentiment Analysis** 集中介绍了基于深度神经网络架构实现高效准确的情感分类方法。文中不仅描述了现有算法的工作原理,还对未来研究方向提出了建设性的意见[^7]。 为了更深入地了解这一快速发展的研究领域,建议查阅上述提到的相关综述资料。这些资源能够帮助读者掌握当前最前沿的技术成果并启发新的探索思路。 ```python # 示例代码用于展示如何获取学术文献列表 (伪代码) def get_review_papers(topic): query = f"{topic} review paper" results = search_academic_database(query) return format_results_as_bibliography(results) papers = get_review_papers("multimodal sentiment analysis") print(papers) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值