Given a binary array, find the maximum length of a contiguous subarray with equal number of 0 and 1.
Example 1:
Input: [0,1]
Output: 2
Explanation: [0, 1] is the longest contiguous subarray with equal number of 0 and 1.
Example 2:
Input: [0,1,0]
Output: 2
Explanation: [0, 1] (or [1, 0]) is a longest contiguous subarray with equal number of 0 and 1.
Note: The length of the given binary array will not exceed 50,000.
这道题给了我们一个二进制的数组,让我们找邻近的子数组使其0和1的个数相等。对于求子数组的问题,我们需要时刻记着求累积和是一种很犀利的工具,但是这里怎么将子数组的和跟0和1的个数之间产生联系呢?我们需要用到一个trick,遇到1就加1,遇到0,就减1,这样如果某个子数组和为0,就说明0和1的个数相等,这个想法真是太叼了,不过博主木有想出来。知道了这一点,我们用一个哈希表建立子数组之和跟结尾位置的坐标之间的映射。如果某个子数组之和在哈希表里存在了,说明当前子数组减去哈希表中存的那个子数字,得到的结果是中间一段子数组之和,必然为0,说明0和1的个数相等,我们更新结果res,
map的初始化要注意
代码如下:
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <string>
#include <climits>
#include <algorithm>
#include <sstream>
#include <functional>
#include <bitset>
#include <numeric>
#include <cmath>
using namespace std;
class Solution
{
public:
int findMaxLength(vector<int>& nums)
{
int res = 0, n = nums.size(), sum = 0;
map<int, int> mmp{ { 0, -1 } };
for (int i = 0; i < n; ++i)
{
sum += (nums[i] == 1) ? 1 : -1;
if (mmp.find(sum)!=mmp.end())
res = max(res, i - mmp[sum]);
else
mmp[sum] = i;
}
return res;
}
};