使用Calinski-Harabasz指数进行K-Means聚类分析

465 篇文章 ¥39.90 ¥99.00
本文介绍了Calinski-Harabasz指数在K-Means聚类分析中的作用,解释了其计算原理,并提供了一个使用Python scikit-learn库计算该指数的示例。较高的指数表明聚类效果更好。此外,还提及了其他聚类效果评估指标,如轮廓系数和Davies-Bouldin指数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Calinski-Harabasz指数进行K-Means聚类分析

在聚类分析领域,Calinski-Harabasz指数是评估K-Means聚类算法效果的一种常用指标。它的计算方法基于组内离差平方和和组间离差平方和之比,越大表示组间距离越大,组内距离越小,聚类效果越好。

在Python中,我们可以使用scikit-learn库中的metrics模块来计算Calinski-Harabasz指数。下面是一个简单的例子:

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn import metrics

# 生成样本数据
X, y <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值