使用Calinski-Harabasz指数进行K-Means聚类分析
在聚类分析领域,Calinski-Harabasz指数是评估K-Means聚类算法效果的一种常用指标。它的计算方法基于组内离差平方和和组间离差平方和之比,越大表示组间距离越大,组内距离越小,聚类效果越好。
在Python中,我们可以使用scikit-learn库中的metrics模块来计算Calinski-Harabasz指数。下面是一个简单的例子:
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn import metrics
# 生成样本数据
X, y <