基于Matlab GUI的CNN人脸表情识别

727 篇文章 624 订阅 ¥39.90 ¥99.00
本文介绍了使用Matlab GUI和深度学习工具箱构建基于CNN的人脸表情识别系统。通过使用FER-2013数据集,包含7种表情的35,887张图像,构建了包含卷积层、池化层、全连接层和softmax层的CNN模型。经过数据预处理和训练,最终在Matlab GUI中实现了表情识别的应用。" 112627197,10539363,拼多多SKU价格批量修改脚本,"['电商开发', '前端开发', '脚本工具', '拼多多后台']
摘要由CSDN通过智能技术生成

基于Matlab GUI的CNN人脸表情识别

近年来,深度学习在图像识别领域取得了很大的成功。卷积神经网络(CNN)是其中最受欢迎和成功的算法之一。本文介绍了如何使用Matlab GUI创建一个基于CNN的人脸表情识别系统。

首先,我们需要收集人脸表情数据集。本文使用FER-2013(Facial Expression Recognition 2013)数据集,该数据集包含从互联网上收集的35,887张人脸图像,共有7种表情(愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性)。每张图像的大小为48x48像素,并且已经恰当地标记了表情类别。

接下来,我们将使用Matlab中的Deep Learning Toolbox创建我们的CNN模型。我们使用了三个卷积层和三个池化层,然后是两个全连接层和一个softmax层。以下是我们的CNN模型的代码:

layers = [
    imageInputLayer([48 48 1])
    
    convolution2dLayer(3,16,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    maxPooling2dLayer(2,'Stride',2)
    
    convolution2dLayer(3,32,'Padding','same')
    batchNormali
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值