基于Matlab GUI的CNN人脸表情识别
近年来,深度学习在图像识别领域取得了很大的成功。卷积神经网络(CNN)是其中最受欢迎和成功的算法之一。本文介绍了如何使用Matlab GUI创建一个基于CNN的人脸表情识别系统。
首先,我们需要收集人脸表情数据集。本文使用FER-2013(Facial Expression Recognition 2013)数据集,该数据集包含从互联网上收集的35,887张人脸图像,共有7种表情(愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性)。每张图像的大小为48x48像素,并且已经恰当地标记了表情类别。
接下来,我们将使用Matlab中的Deep Learning Toolbox创建我们的CNN模型。我们使用了三个卷积层和三个池化层,然后是两个全连接层和一个softmax层。以下是我们的CNN模型的代码:
layers = [
imageInputLayer([48 48 1])
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormali