switch sentence

#!/usr/bin/env python
# -*- coding: utf-8 -*-


class switch(object):
    def __init__ (self,value): 
        self.value=value
        self.fall=False      
    def __iter__ (self):
        yield self.match     
        raise StopIteration  
    def match (self,*args):
        if self.fall or not args: 
            return True           
        elif self.value in args:  
            self.fall=True
            return True
        else:                     
            return False


operator="-"
x=1
y=2
for case in switch(operator):
 if case("+"):
  print x+y
  break
 if case("-"):
  print x-y
  break
 if case("*"):
  print x*y
  break
 if case("/"):
  print x/y
  break
 else:
  print ""
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Sentence Transformer是一个Python框架,用于生成句子、文本和图像的嵌入(Embedding)表示。通过使用该框架,可以将文本转化为向量表示,从而在文本相似度计算、文本分类等任务使用。这个框架使用了预训练的语言模型,例如MiniLM等,来生成高质量的文本嵌入,以捕捉句子的语义信息。 使用Sentence Transformer的过程是比较简单的。首先,需要导入框架并加载相应的模型。然后,将待处理的句子作为一个字符串列表传入模型的encode方法,即可获取到对应的嵌入向量。最后,可以根据需要对这些嵌入向量进行进一步的处理和应用。 通过使用Sentence Transformer,我们可以方便地将文本转化为向量表示,并在各种NLP任务发挥作用,比如文本相似度计算、文本分类、信息检索等。这个框架提供了一种简单而有效的方式来处理文本数据,并获得具有丰富语义信息的嵌入表示。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [SentenceTransformers库介绍](https://blog.csdn.net/m0_47256162/article/details/129380499)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [5分钟 NLP系列 — SentenceTransformers 库介绍](https://blog.csdn.net/m0_46510245/article/details/122516399)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值