回归中的几个统计概念

如下图所示:
统计概念

昨天做一个文本引用的回归分析,数据集和代码见我的github:https://github.com/cooljacket/TextReferenceRegression
在做上述的线性回归的时候,发现cost一直很高,降不下来,学习速率调高到0.0975或以上,就会发现梯度下降变慢,甚至是变成不收敛的。

然后出于数据集有点大,总共25000个sample,所以就采用了SGD来做,发现降是能够讲到27点多(batch training得到的cost收敛在33点多),但是得做一下cross_validation看是否过拟合了(还没完成CV部分)。

最后打算将自己手写的模型跟已有的软件比较一下,用了weka,待会用scikit-learn试一下。weka跑出来的结果就是,上面的图里的那几个量,完全懵逼。。。google了一下,有大神在stackexchange上面解释了, 保存过来。

觉得自己除了时间不够,基础的知识还是得好好学起来呀,不要”建危房“哈哈。


参考:
https://stats.stackexchange.com/questions/131267/how-to-interpret-error-measures-in-weka-output/131273#131273?newreg=b70c5dd2c51e4d6ba8d0e38c8c1cbca0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值