题目大意
给定从左到右多个矩形,
已知这此矩形的宽度都为1,长度不完全相等。
这些矩形相连排成一排,求在这些矩形包括的范围内能得到的面积最大的矩形。
所求矩形可以横跨多个矩形,但不能超出原有矩形所确定的范围。
思路
这道题思考性比较强。
首先把矩形的高和宽捆成二元组。
考虑搞一个单调递增的单调栈,然后用来维护矩形的高。
然后不断累加矩形的宽,在维护单调栈单调性的同时维护一下最大面积。
最后的时候要清空单调栈,清空的时候还要重复一次上面的操作。
代码
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
pair <long long,long long> stack[200010];
long long top;
long long n,a[200010],ans;
int main()
{
while(scanf("%lld",&n))
{
memset(stack,0,sizeof(stack));
if(n==0)
return 0;
for(long long i=1; i<=n; i++)
scanf("%lld",&a[i]);
for(long long i=1; i<=n; i++)
{
long long len=1;
while(top&&a[stack[top].first]>=a[i])
{
len+=stack[top].second;
ans=max(ans,(len-1)*a[stack[top].first]);
top--;
}
stack[++top].first=i;
stack[top].second=len;
}
long long len=0;
for(long long i=top; i>=1; i--)
{
len+=stack[i].second;
ans=max(ans,len*a[stack[i].first]);
}
printf("%lld\n",ans);
ans=0;
}
return 0;
}