题目描述:
统计所有小于非负整数 n 的质数的数量。
示例:
输入: 10 输出: 4 解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
思路1:暴力法:根据质数的定义,质数的因子只有1和它本身,显然偶数除了2以外都不是质数,两趟遍历即可,虽然除去了偶数,但是时间复杂度达到O(N*N), js运行直接不给通过,因为超时了,但是本机自己运行得到输入 n=499979 的结果是 41537
var countPrimes = function(n) {
// 思路1:暴力法:根据质数的定义,质数的因子只有1和它本身,显然偶数除了2以外都不是质数,两趟遍历即可, z这个复杂度是O(N*N),执行结果会超时
if(n <= 2) {
return 0;
} else {
let count = 0;
for(let i = 3; i < n; i++) {
let p = true; // 用于判断是否需要计数的布尔量
for(let j = 2; j < i; j++) {
if(i % j === 0) {
p = false; // 除了1和本身有了其他的因子,为非质数,跳过该次循环
break;
}
}
if(p) { count++; }
}
return count+1; // 要算上2
}
};
思路二:
同样是从定义出发,但是内循环的边界可以缩小很多; 有定理:如果一个 n 不是质数,则 n 有介于 1 和 根号n (n的平方根) 之间的因子。 证明也简单:利用反证法,n不是质数,则肯定有因子介于 1到n 之间,反证法,假如这个因子为 a , 大于根号 n , 则另一个因子 为 n / a ,由假设 a > 根号n, 则 n/a必然小于根号n,即总有一个因子介于1和根号n之间,得证。
所以,在上面由定义判断的基础上,缩小判断边界,内循环最坏情况只需判断 小于根号n个数即可,时间复杂度是O(N*sqrt(N))
/**
* @param {number} n
* @return {number}
*/
var countPrimes = function(n) {
if(n <= 2) {
return 0;
} else {
let count = 0;
for(let i = 3; i < n; i++) {
let p = true; // 用于判断是否需要计数的布尔量
for(let j = 2; j * j <= i; j++) { // 对比法1只是改变了这里
if(i % j === 0) {
p = false; // 除了1和本身有了其他的因子,为非质数,跳过该次循环
break;
}
}
if(p) { count++; }
}
return count+1; // 要算上2
}
};