Leetcode204 : 计数质数

题目描述:

统计所有小于非负整数 的质数的数量。

示例:

输入: 10
输出: 4
解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

 思路1:暴力法:根据质数的定义,质数的因子只有1和它本身,显然偶数除了2以外都不是质数,两趟遍历即可,虽然除去了偶数,但是时间复杂度达到O(N*N), js运行直接不给通过,因为超时了,但是本机自己运行得到输入 n=499979 的结果是 41537

var countPrimes = function(n) {
    // 思路1:暴力法:根据质数的定义,质数的因子只有1和它本身,显然偶数除了2以外都不是质数,两趟遍历即可, z这个复杂度是O(N*N),执行结果会超时
   if(n <= 2) {
       return 0;
   } else {
       let count = 0;
       for(let i = 3; i < n; i++) {
          let p = true;  // 用于判断是否需要计数的布尔量
          for(let j = 2; j  <  i;  j++) {
              if(i % j === 0) {
                  p = false; // 除了1和本身有了其他的因子,为非质数,跳过该次循环
                  break;
              }
          }
          if(p) { count++; } 
       }
       return count+1;  // 要算上2
   }
};

思路二:

同样是从定义出发,但是内循环的边界可以缩小很多; 有定理:如果一个 n 不是质数,则 n 有介于 1 和 根号n (n的平方根) 之间的因子。 证明也简单:利用反证法,n不是质数,则肯定有因子介于 1到n 之间,反证法,假如这个因子为 a , 大于根号 n , 则另一个因子 为 n / a ,由假设 a > 根号n, 则 n/a必然小于根号n,即总有一个因子介于1和根号n之间,得证。

所以,在上面由定义判断的基础上,缩小判断边界,内循环最坏情况只需判断 小于根号n个数即可,时间复杂度是O(N*sqrt(N))

/**
 * @param {number} n
 * @return {number}
 */
var countPrimes = function(n) {
   
   if(n <= 2) {
       return 0;
   } else {
       let count = 0;
       for(let i = 3; i < n; i++) {
          let p = true;  // 用于判断是否需要计数的布尔量
          for(let j = 2; j * j <= i; j++) {    // 对比法1只是改变了这里
              if(i % j === 0) {
                  p = false; // 除了1和本身有了其他的因子,为非质数,跳过该次循环
                  break;
              }
          }
          if(p) { count++; } 
       }
       return count+1;  // 要算上2
   }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值