最大的和
给定一个包含整数的二维矩阵,子矩形是位于整个阵列内的任何大小为1 * 1或更大的连续子阵列。
矩形的总和是该矩形中所有元素的总和。
在这个问题中,具有最大和的子矩形被称为最大子矩形。
例如,下列数组:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩形为:
9 2
-4 1
-1 8
它拥有最大和15。
输入格式
输入中将包含一个N*N的整数数组。
第一行只输入一个整数N,表示方形二维数组的大小。
从第二行开始,输入由空格和换行符隔开的N2个整数,它们即为二维数组中的N2个元素,输入顺序从二维数组的第一行开始向下逐行输入,同一行数据从左向右逐个输入。
数组中的数字会保持在[-127,127]的范围内。
输出格式
输出一个整数,代表最大子矩形的总和。
数据范围
1≤N≤100
输入样例:
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
输出样例:
15
分析
对于这一题来说相对来说比较容易想到的解题方法是采用4重循环来分别枚举矩形的起点和终点,再利用我们平时用的前缀和数组进行计算,但是这样是时间复杂度会达到O(N^4)会比较慢所以这里就有一种比较新奇的方法:以第一重循环来表示上边界,用一重循环表示下边界,再用一重循环来枚举列就可以了,这样的时间复杂度为O(N^3)(有一种最长上升子序列的感觉,但是他只考虑前面一个点)光说可能还是会有些地方不了解可以先看下代码如果还有不懂的请留言
代码
#include<iostream>
#include<algorithm>
#include<string>
#include<limits.h>
using namespace std;
const int N = 110;
int g[N][N];
int s[N][N]; //求和数组
int n;
int main() {
cin >> n;
//输入以及求和矩阵
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> g[i][j];
s[i][j] = s[i - 1][j] + g[i][j]; //这不是传统的求和矩阵,这里是我们这一列的和
}
}
int res = INT_MIN;
//i和j是边界的枚举
for(int i=1;i<=n;i++){
for (int j = i; j <= n; j++) {
int last = 0;
//枚举每一列
for (int k = 1; k <= n; k++) {
//如果前面的和大于0我们就加上前面那个矩阵
last = max(last, 0) + s[j][k] - s[i - 1][k];
//取结果
res = max(res, last);
}
}
}
cout << res << endl;
return 0;
}