先算出d的倍数有多少个sequence
假设a[i]中不能整除d的个数有x个,这x个数一定要替换的,假如x>k,这时答案必然为0,
假如x<=k时,因为m以内是d的倍数有m/d个,把这x个数替换掉有pow(m/d,x)种可能,
按题意还有k-x个数要替换,就从n-x个中选出k-x个数,C(n-x,k-x)
然后用d的倍数中除了它自身的数替换它(注意这k-x个数是d的倍数),pow(m/d-1,k-x)
所以dp[d]=pow(m/d,x)*C(n-x,k-x)*pow(m/d-1,k-x)
这时候还要去重,dp[d]=dp[d]-(dp[2*d]+dp[3*d]+dp[4*d].....),注意要从后往前枚举d,这时候前面已经算好的dp[i]值才没有重复
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
using namespace std;
#define ll long long
#define N 300050
#define mod 1000000007
ll pow_mod(ll a,ll b)
{
if(b==0) return 1;
if(a<=0) return 0;
ll res=1;
while(b)
{
if(b&1)
res*=a;
res%=mod;
b>>=1;
a*=a;
a%=mod;
}
return res;
}
int a[N];
ll dp[N];
ll fac[N],invfac[N];
int num[N];
ll cal(ll n,ll m)
{
return fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
int main ()
{
fac[0]=1;invfac[0]=1;
for(int i=1;i<=300000;++i)
{
fac[i]=fac[i-1]*i%mod;
invfac[i]=pow_mod(fac[i],mod-2);
}
int n,m,k;
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
memset(num,0,sizeof(int)*(m+5));
for(int i=1;i<=n;++i)
num[a[i]]++;
for(ll d=m;d>=1;--d)
{
dp[d]=0;
ll x=0;
for(int j=1;j*d<=m;++j)
x+=num[j*d];
x=n-x;
if(x>k)
{
dp[d]=0;
continue;
}
ll aa=pow_mod(m/d,x)*pow_mod(m/d-1,k-x)%mod;
aa*=cal(n-x,k-x);
dp[d]=aa%mod;
for(int j=2;j*d<=m;++j)
{
dp[d]-=dp[j*d];
if(dp[d]<0)
dp[d]+=mod;
}
//dp[d]=(dp[d]%mod+mod)%mod;
}
for(int i=1;i<=m;++i)
{
printf("%I64d",dp[i]);
if(i<m)
printf(" ");
else printf("\n");
}
}
return 0;
}