筛素数总结

朴素筛法(O(nlogn))

不管是素数还是合数都用来筛掉后面的倍数

#include<iostream>
using namespace std;
const int N = 1e6+10;
int primes[N],cnt;//primes存所有素数,cnt是素数个数
bool st[N];//置为false的是素数,置为true的是非素数
void get_primes(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i]) primes[cnt++]=i;//将素数存起
        for(int j=i+i;j<=n;j+=i)//不管是素数还是合数都用来筛掉后面的倍数
            st[j]=true;
    }
}

int main()
{
    int n;
    cin>>n;
    get_primes(n);
    cout<<cnt<<endl;
    return 0;
}

埃氏筛法O(nloglogn)

只用素数来筛掉后面的合数

#include<iostream>
using namespace std;
const int N = 1e6+10;
int primes[N],cnt;//primes存所有素数,cnt是素数个数
bool st[N];//置为false的是素数,置为true的是非素数
void get_primes(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
            primes[cnt++]=i;
            for(int j=i+i;j<=n;j+=i)
                st[j]=true;
        }
    }
}
int main()
{
    int n;
    cin>>n;
    get_primes(n);
    cout<<cnt<<endl;
    return 0;
}

线性筛法O(n)

只用最小质因子来筛后面的合数

线性筛法很重要,它不仅可以筛素数,还可以运用到欧拉函数等很多方面。

#include<iostream>
using namespace std;
const int N = 1e6+10;
int primes[N],cnt;//primes存所有素数,cnt是素数个数
bool st[N];//置为false的是素数,置为true的是非素数
void get_primes(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
            primes[cnt++]=i;
        for(int j=0;primes[j]<=n/i;j++)//j下标由0开始,枚举primes数组中的素数
        {
            st[primes[j]*i]=true;//无论何时primes[j]都是primes[j]*i的最小质因子,因此这个语句就是用 primes[j]*i 这个数的最小质因子筛primes[j]*i 
            if(i%primes[j]==0) break;//此时primes[j]一定是i的最小质因子
        }
    }
}
int main()
{
    int n;
    cin>>n;
    get_primes(n);
    cout<<cnt<<endl;
    return 0;
}

线性筛法的原理是什么?

(1).核心:1~n内的合数p只会被其最小质因子筛掉.

(2).原理:1~n之内的任何一个合数一定会被筛掉,而且筛的时候只用最小质因子来筛,然后每一个数都只有一个最小质因子,因此每个数都只会被筛一次,因此线性筛法是线性的。

(3).枚举到 i 的最小质因子的时候就会停下来,即“if(i%primes[j]==0) break;”。

(4).因为从小到大枚举的所有质数,所以当”i%primes[j]!=0”时,primes[j] 一定小于i的最小质因子,primes[j] 一定是primes[j]*i的最小质因子。

(5).因为是从小到大枚举的所有质数,所以当“i%primes[j]==0”时,primes[j] 一定是i的最小质因子,而 primes[j] 又是 primes[j] 的最小质因子,因此 primes[j] 是primes[j]*i的最小质因子。

(6).关于for循环的解释:
注:首先要把握住一个重点:我们枚举的时候是从小到大枚举的所有质数。

1.当 i%primes[j]==0 时,因为是从小到大枚举的所有质数,所以 primes[j] 就是 i 的最小质因子,而 primes[j] 又是其本身 primes[j] 的最小质因子,因此当 i%primes[j]==0 时,primes[j] 是primes[j]*i的最小质因子。

2.当 i%primes[j]!=0 时,因为是从小到大枚举的所有质数,且此时并没有出现过有质数满足 i%primes[j]==0,因此此时的 primes[j] 一定小于 i 的最小质因子,而 primes[j] 又是其本身 primes[j] 的最小质因子,所以当 i%primes[j]!=0 时,primes[j] 也是primes[j]*i的最小质因子。

3.综合1,2得知,在内层for循环里面无论何时,primes[j]都是primes[j]*i的最小质因子,因此”st[primes[j]*i]=true”
语句就是用 primes[j]*i 这个数的最小质因子来筛掉 primes[j]*i 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值