素数筛总结

1. 基本解法

基本的素数判断条件是,从1和这个数本身以外,中间没有任何数可以被其整除的数就是素数。
反过来也可以说如果有一个数可以被整除就是合数了。
所以基本的素数判断就这么写:

bool isPrime(int n){
    for (int i = 2; i < n; ++i) {
        if (n % i == 0)
            return false;
    }
    return true;
}

然后,求从1到数字n的所有素数就是在外面再套一个for循环,从2开始找就行。

bool isPrime[100000]; //表示某一个数是不是素数
int prime[100000];  //所有素数的排列
int prime_c; // 素数的数量

void getPrime(int n){
    memset(isPrime, true, sizeof(isPrime));  //先把所有的数都设成素数
    prime_c = 0;
    for (int i = 2; i < n; ++i) {

        for (int j = 2; j < i; ++j) {
            if (i % j == 0) {
                isPrime[i] = false;
                break;
            }
        }
        if (isPrime[i])
            prime[prime_c++] = i;
    }
}

由于是两个for循环,所以时间复杂度为o(n^2)。

2. 普通筛

接下来说素数筛,一般也叫做Eratosthenes筛或者埃式筛。

对于刚才的解法o(n^2)而言,所有的数都要从2开始重新整除,这就造成了很多的时间浪费。这里就要用到新的解法。

在求素数的时候,可以很容易的得到一个想法:任何一个数,他的整数倍数都绝对不会是素数。
比如说2的2倍数4,3倍数6,4倍数8等等都不是素数。
那么,在当把所有数的整倍数筛选掉后,剩下的就都是素数了。
具体的解法是这样:从2开始,每遇到一个数,就将它的整数倍数(从2倍数开始直到乘后大于上限)设为合数。

bool isPrime[100000]; //表示某一个数是不是素数
int prime[100000];  //所有素数的排列
int prime_c; // 素数的数量

void eGetPrime(int n){
    memset(isPrime, true, sizeof(isPrime));  //先把所有的数都设成素数
    prime_c = 0;
    for (int i = 2; i < n; i++){
        if (isPrime[i]){
            prime[prime_c++] = i;
        }
        for (int j = 2; i*j < n; ++j) {
            isPrime[i*j] = false;
        }
    }
}

但是你会更明显的发现一个事实,那就是如果一个数已经是合数,那他的倍数就更不可能是素数了,所以再略作修改。

void getPrime(int n){
    memset(isPrime, true, sizeof(isPrime));  //先把所有的数都设成素数
    prime_c = 0;
    for (int i = 2; i < n; i++){
        if (isPrime[i])
            prime[prime_c++] = i;
        else
            continue; //如果是合数,就跳过这次的for循环
        
        for (int j = 2; i*j < n; ++j) {
            isPrime[i*j] = false;
        }
    }
}

这次修改虽然只加了一点,但是又一次的减少了算法的所需时间,最终的时间复杂度为o(nlog2n)。

3. 线性筛

最后说时间复杂度最低的线性筛,Euler筛也称作欧拉筛。

对于埃式筛而言,可以很明显的看到还有一个缺点就是,有些数字还是会做出重复的判断,比如说6同时是2和3的整数倍数,那么他就会两次被打上标记,这个也是耗时变长的一部分原因。

而欧拉筛最终会消除这种重复的判断,让时间复杂度变成o(n),可以说是不能再快了。

那么到底是怎么做到的,这里用上了用来保存素数的数组prime[],主要思想是:让每个合数只被它的最小质因子筛选一次,以达到不重复的目的。

质因数(素因数):任何一个合数都一定有一个最小质因数
质因数 就是一个数的约数,并且是质数。
比如8=2×2×2,2就是8的质因数;
12=2×2×3,2和3就是12的质因数。

bool isPrime[100000]; //表示某一个数是不是素数
int prime[100000];  //所有素数的排列
int prime_c; // 素数的数量
void getPrime(int n){
    memset(isPrime, true, sizeof(isPrime));  //先把所有的数都设成素数
    prime_c = 0;
    for (int i = 2; i < n; i++){
        if (isPrime[i])
            prime[prime_c++] = i;

        for (int j = 0; j<prime_c && i*prime[j]<n; ++j) {
            isPrime[i * prime[j]] = false;  //用i * prime[j]来代替 i * j
            if (i % prime[j] == 0) break; //重要
        }
    }
}

日志截图
大体的想法相当于埃式筛,主要是就是用prime[]数组内的数来代替原本的整数集合。

举例:
原本对于数字2,用埃式筛法的时候,我们会进行2* 2,2* 3,2* 4进行不断的乘,直到大于最大数n

而在线性筛中,对于数字2,我们会将已经存在prime数组内的数2来进行乘,只计算一次2* 2

然后对于数字3,由于之前已经存入了2和3,就会计算3* 2,3* 3

然后重点来了:

对于数字4,原本应该进行4* 2,4* 3,但是只进行了4* 2,却没有进行4* 3,这也是欧拉筛里面核心的思想,最小质因数。

任何一个合数都可以表示成多个素数的积,当 i 可以整除 prime[j](也就是4整除2)的时候,
i * prime[j+1] 一定会在将来的某个时间点被标记成合数。

如果没有 if(i % prime[j] == 0)的话,那么会计算4* 3 = 12,但是实际上,标记12的是 6* 2= 12。

那么为什么会这样呢,先来思考一下12的解法:
2 * 6 = 12和3 * 4 = 12
但是6和4都不是最小质因数,所以
2 * (2 * 3) = 12和3 * (2 * 2) = 12才对

由于4可以整除2,那么对于12而言,4肯定不是最小的质因数,所以会有其他的数在将来和2来配对,来标记12为合数。

说白了,当发现4可以整除2的时候,就得出一个结论:所有4可以标记的合数,2都能做到,所以4可以下班了!

欧拉筛的核心思想:每个数都会被它的最小质因数和另一个最大的数相乘从而被筛选掉。

参考材料

数论 - 欧拉筛法(线性筛)的解释 - Losk_0的博客 - CSDN博客
https://blog.csdn.net/Losk_0/article/details/87884390

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值