AcWing 340. 通信线路(第k+1大值最小 二分答案 + 堆优化dijkstra)

17 篇文章 0 订阅
15 篇文章 1 订阅
本文介绍了如何使用二分搜索结合堆优化的Dijkstra算法解决图上寻找特定路径的问题。具体是寻找从节点1到节点n的所有路径中,第k+1大的边权的最小值。通过分析二分搜索的边界条件和最短路问题的转化,实现了在大数据规模下有效求解的方法。时间复杂度约为4e6,确保了算法的效率。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题意:

求一张无向图上 所有从 1→n 的路径中 k+1 大的边权的最小值

思路:

首先考虑暴力怎么做:搜出所有路径再找最小值,但我们发现数据规模太大,做不了。

于是我们可以从最小值入手,也就是采取二分答案,利用二分将这个值求出来。

题目中给出边权的最大值1e6,我们将二分的区间范围定为[0, 1e6+1]

假设我们二分出一个值x,那意味着x应该满足:从 1→n 的路径中应该存在一条路,使得这条路上 最多有 k 条大于x的边。(二分值需要满足的属性

那么如何刻画这个属性呢?

可以着眼于图上的边权是否大于x如果大于,则贡献是 1,否则是 0,那么题目就转化为最短路问题。这里采用 堆优化dijkstra 算法来求。

注意:

二分答案的时候我们要分析为什么区间边界设置为01e6+1是正确的

  • 一、左边界应定为0。 从实际情况出发可以知道,如果k大于一条路径的边数则结果为0
  • 二、右边界应该定为1e6+1。 如果右边界1e6,则 会有两种情况结果为1e6
    • ①当起点1走不到终点n时,由于二分的特性最终会返回右边界,即1e6
    • ②当起点1走到终点n时,但最终的花费是1e6,结果返回1e6(例如1n的路径经过两条长度都是1e6的边k=1,此时结果就是1e6)因此为了区分上面这两种情况需要将右边界定义成1e6+1

问题:

有没有一种可能这个二分出来的值不存在边权里面呢?

不可能,因为如果二分出来的值不在边权中,此时该值必然使得check()返回true(如果返回false连条件都不满足,肯定不会是答案),那么就会继续二分,直到找到满足条件的最小值。这道题二分的本质仍是找到满足条件的最小值。

时间复杂度:

logN(二分答案 N<=1e6) × mlogn堆优化dijkstram边数、n点数)

算出来很小,大概4e6左右

代码:

#include<bits/stdc++.h>

using  namespace std;

const int N = 1010, M = 2e4+10;
typedef pair<int, int> pii;
#define x first
#define y second
#define inf 0x3f3f3f3f
int dist[N], h[N], e[M], ne[M], w[M], idx;
bool st[N];
int n, p, k;

void add(int a, int b, int c)
{
        e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

bool dij_check(int mid)
{
        memset(dist, 0x3f, sizeof dist);
        memset(st, false, sizeof st);
        dist[1] = 0;
        priority_queue<pii, vector<pii>, greater<pii>> pq;
        pq.push({dist[1], 1});
        while(pq.size())
        {
                pii tmp = pq.top();
                pq.pop();
                int ver = tmp.y, distance = tmp.x;
                if(st[ver]) continue;
                st[ver] = true;
                for(int i=h[ver]; ~i; i=ne[i]){
                        int j = e[i];
                        if(dist[j]>distance + (w[i] > mid ? 1 : 0)){
                                dist[j] = distance + (w[i] > mid ? 1 : 0);
                                pq.push({dist[j], j});
                        }
                }
        }
        if(dist[n]<=k) return true;
        return false;
}

int main()
{
        cin>>n>>p>>k;
        memset(h, -1, sizeof h);
        for(int i=0;i<p;++i)
        {
                int a, b, w;
                cin>>a>>b>>w;
                add(a, b, w), add(b, a, w);
        }

        int l = 0, r = 1e6+1;
        while(l<r)
        {
                int mid = l+r>>1;
                if(dij_check(mid)) r = mid;
                else l = mid+1;
        }
        if(l != 1e6+1) cout<<l<<endl;
        else cout<<-1<<endl;//如果二分答案是1e6+1,说明不存在1->n的路径

        return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值