题意:
求一张无向图上 所有从 1→n
的路径中,第 k+1
大的边权的最小值。
思路:
首先考虑暴力怎么做:搜出所有路径再找最小值,但我们发现数据规模太大,做不了。
于是我们可以从最小值入手,也就是采取二分答案,利用二分将这个值求出来。
题目中给出边权的最大值是1e6
,我们将二分的区间范围定为[0, 1e6+1]
假设我们二分出一个值x
,那意味着x
应该满足:从 1→n
的路径中应该存在一条路,使得这条路上 最多有 k
条大于x
的边。(二分值需要满足的属性)
那么如何刻画这个属性呢?
可以着眼于图上的边权是否大于x
,如果大于,则贡献是 1
,否则是 0
,那么题目就转化为最短路问题。这里采用 堆优化dijkstra
算法来求。
注意:
二分答案的时候我们要分析为什么区间边界设置为0
和1e6+1
是正确的:
- 一、左边界应定为
0
。 从实际情况出发可以知道,如果k
大于一条路径的边数则结果为0
。 - 二、右边界应该定为
1e6+1
。 如果右边界为1e6
,则 会有两种情况结果为1e6
: -
- ①当起点
1
走不到终点n
时,由于二分的特性,最终会返回右边界,即1e6
- ①当起点
-
- ②当起点
1
走到终点n
时,但最终的花费是1e6
,结果返回1e6
(例如1
到n
的路径经过两条长度都是1e6
的边,k=1
,此时结果就是1e6
)因此为了区分上面这两种情况需要将右边界定义成1e6+1
- ②当起点
问题:
有没有一种可能这个二分出来的值不存在边权里面呢?
不可能,因为如果二分出来的值不在边权中,此时该值必然使得check()返回true(如果返回false连条件都不满足,肯定不会是答案),那么就会继续二分,直到找到满足条件的最小值。这道题二分的本质仍是找到满足条件的最小值。
时间复杂度:
logN
(二分答案 N<=1e6
) × mlogn(堆优化dijkstra
,m
边数、n
点数)
算出来很小,大概4e6
左右
代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 1010, M = 2e4+10;
typedef pair<int, int> pii;
#define x first
#define y second
#define inf 0x3f3f3f3f
int dist[N], h[N], e[M], ne[M], w[M], idx;
bool st[N];
int n, p, k;
void add(int a, int b, int c)
{
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}
bool dij_check(int mid)
{
memset(dist, 0x3f, sizeof dist);
memset(st, false, sizeof st);
dist[1] = 0;
priority_queue<pii, vector<pii>, greater<pii>> pq;
pq.push({dist[1], 1});
while(pq.size())
{
pii tmp = pq.top();
pq.pop();
int ver = tmp.y, distance = tmp.x;
if(st[ver]) continue;
st[ver] = true;
for(int i=h[ver]; ~i; i=ne[i]){
int j = e[i];
if(dist[j]>distance + (w[i] > mid ? 1 : 0)){
dist[j] = distance + (w[i] > mid ? 1 : 0);
pq.push({dist[j], j});
}
}
}
if(dist[n]<=k) return true;
return false;
}
int main()
{
cin>>n>>p>>k;
memset(h, -1, sizeof h);
for(int i=0;i<p;++i)
{
int a, b, w;
cin>>a>>b>>w;
add(a, b, w), add(b, a, w);
}
int l = 0, r = 1e6+1;
while(l<r)
{
int mid = l+r>>1;
if(dij_check(mid)) r = mid;
else l = mid+1;
}
if(l != 1e6+1) cout<<l<<endl;
else cout<<-1<<endl;//如果二分答案是1e6+1,说明不存在1->n的路径
return 0;
}