AcWing 843. n-皇后问题(两种搜索顺序比较)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
思路1:

本题有多种搜索顺序,这里给出两种搜索方式

第一种搜索顺序:

思想与全排列思想一模一样,从前往后依次枚举每个皇后放置在哪一列(每一行只能放一个皇后且必须放一个皇后),相当于在全排列中设置n个位置,并依次枚举每个位置应该选什么数字。

递归搜索树的绘制也可以参考上一题

注意剪枝:放置皇后的同时判断该位置是否合法(有无冲突),如不合法,则没必要往下递归了,直接回溯

其实我们也可以先完全像上题一样将n的全排列搜出来,再判断方案是否合法。

不要row数组进行判重的原因:我们枚举的时候是按行枚举的,枚举的时候就已经保证了每一行只有一个,即已经消除了行冲突,无需row数组。

时间复杂度:

O(n*n!)

代码一:

在每行枚举放哪一列(类比排列数字,枚举n个坑位,即n行,每一个坑位枚举放什么数字,即选择什么列)

#include<iostream>

using namespace std;
const int N = 10;
bool col[N];//列
bool ldg[2*N],rdg[2*N];//左斜对角线和右斜对角线
char path[N][N];//棋盘
int n;
void dfs(int row)//行
{
    if(row==n)
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
                cout<<path[i][j];
            cout<<endl;
        }
        cout<<endl;
        return;
    }
    for(int c=0;c<n;c++)//列
    {
        if(!col[c]&&!ldg[c+row]&&!rdg[c-row+n])//剪枝
        {
            path[row][c]='Q';
            col[c]=ldg[c+row]=rdg[c-row+n]=true;
            dfs(row+1);
            //回溯
            path[row][c]='.';
            col[c]=ldg[c+row]=rdg[c-row+n]=false;
        }
    }
}
int main()
{
    cin.tie(0);
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        path[i][j]='.';
    dfs(0);
    return 0;
}

思路2:

第二种搜索顺序:

一种更原始的方式枚举:先枚举第一个格子(1, 1),有两个分支:“放” or “不放”,再枚举第二个格子(不确定是哪个格子),也有两个分支,之后挨个枚举每一个格子,当我们枚举完最后一个格子,也就是第n^2个格子时,我们就找到了一个答案(当然此时放置的皇后数量应该是n

递归搜索树:
在这里插入图片描述
时间复杂度:

O(2 ^ ( n ^ 2))

代码二:

爆搜各点选/不选
#include<bits/stdc++.h>

using namespace std;

const int N = 15;
char g[N][N];
bool row[N], col[N], ldg[N<<1], rdg[N<<1];
int n;

void dfs(int x, int y, int s)//s代表的是选定当前点(x, y)摆放之前,所拥有的皇后数量(一定<=n)
{
        if(y==n+1) y = 1, ++x;//如果出界了,我们就转移到下一行第一个格子
        if(x==n+1)//枚举完最后一行n了
        {
                if(s==n)//此时s记录的是经过前n行搜索后摆放的皇后数量,如果达到目标值n了
                {
                //则输出答案
                        for(int i=1;i<=n;++i) puts(g[i]+1);//下表从1开始,注意g[i]+1
                        cout<<endl;
                }
                return ;
        }
        //分支一:不放皇后,递归到下一格
        dfs(x, y+1, s);
        //分支二:放皇后,则需要判断了
        if(!row[x]&&!col[y]&&!ldg[x+y]&&!rdg[x-y+n])
        {
        		//更新状态
                row[x] = col[y] = ldg[x+y] = rdg[x-y+n] = true;
                g[x][y] = 'Q';
                dfs(x, y+1, s+1);
                //恢复现场
                row[x] = col[y] = ldg[x+y] = rdg[x-y+n] = false;
                g[x][y] = '.';
        }
}

int main()
{
        cin>>n;
        for(int i=1;i<=n;++i)
                for(int j=1;j<=n;++j)
                g[i][j] = '.';
        dfs(1, 1, 0);//从左上角(1, 1)开始搜,此时还没有摆放一个皇后,当前为0

        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值