思路1:
本题有多种搜索顺序,这里给出两种搜索方式。
第一种搜索顺序:
思想与全排列思想一模一样,从前往后依次枚举每个皇后放置在哪一列(每一行只能放一个皇后且必须放一个皇后),相当于在全排列中设置n
个位置,并依次枚举每个位置应该选什么数字。
递归搜索树的绘制也可以参考上一题
注意剪枝:放置皇后的同时判断该位置是否合法(有无冲突),如不合法,则没必要往下递归了,直接回溯
其实我们也可以先完全像上题一样将n
的全排列搜出来,再判断方案是否合法。
不要row
数组进行判重的原因:我们枚举的时候是按行枚举的,枚举的时候就已经保证了每一行只有一个,即已经消除了行冲突,无需row
数组。
时间复杂度:
O(n*n!)
代码一:
在每行枚举放哪一列(类比排列数字,枚举n个坑位,即n行,每一个坑位枚举放什么数字,即选择什么列)
#include<iostream>
using namespace std;
const int N = 10;
bool col[N];//列
bool ldg[2*N],rdg[2*N];//左斜对角线和右斜对角线
char path[N][N];//棋盘
int n;
void dfs(int row)//行
{
if(row==n)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cout<<path[i][j];
cout<<endl;
}
cout<<endl;
return;
}
for(int c=0;c<n;c++)//列
{
if(!col[c]&&!ldg[c+row]&&!rdg[c-row+n])//剪枝
{
path[row][c]='Q';
col[c]=ldg[c+row]=rdg[c-row+n]=true;
dfs(row+1);
//回溯
path[row][c]='.';
col[c]=ldg[c+row]=rdg[c-row+n]=false;
}
}
}
int main()
{
cin.tie(0);
ios::sync_with_stdio(false);
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
path[i][j]='.';
dfs(0);
return 0;
}
思路2:
第二种搜索顺序:
一种更原始的方式枚举:先枚举第一个格子(1, 1)
,有两个分支:“放” or “不放”,再枚举第二个格子(不确定是哪个格子),也有两个分支,之后挨个枚举每一个格子,当我们枚举完最后一个格子,也就是第n^2
个格子时,我们就找到了一个答案(当然此时放置的皇后数量应该是n
)
递归搜索树:
时间复杂度:
O(2 ^ ( n ^ 2))
代码二:
爆搜各点选/不选
#include<bits/stdc++.h>
using namespace std;
const int N = 15;
char g[N][N];
bool row[N], col[N], ldg[N<<1], rdg[N<<1];
int n;
void dfs(int x, int y, int s)//s代表的是选定当前点(x, y)摆放之前,所拥有的皇后数量(一定<=n)
{
if(y==n+1) y = 1, ++x;//如果出界了,我们就转移到下一行第一个格子
if(x==n+1)//枚举完最后一行n了
{
if(s==n)//此时s记录的是经过前n行搜索后摆放的皇后数量,如果达到目标值n了
{
//则输出答案
for(int i=1;i<=n;++i) puts(g[i]+1);//下表从1开始,注意g[i]+1
cout<<endl;
}
return ;
}
//分支一:不放皇后,递归到下一格
dfs(x, y+1, s);
//分支二:放皇后,则需要判断了
if(!row[x]&&!col[y]&&!ldg[x+y]&&!rdg[x-y+n])
{
//更新状态
row[x] = col[y] = ldg[x+y] = rdg[x-y+n] = true;
g[x][y] = 'Q';
dfs(x, y+1, s+1);
//恢复现场
row[x] = col[y] = ldg[x+y] = rdg[x-y+n] = false;
g[x][y] = '.';
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
g[i][j] = '.';
dfs(1, 1, 0);//从左上角(1, 1)开始搜,此时还没有摆放一个皇后,当前为0
return 0;
}