AcWing 1019. 庆功会(多重背包模板题)

这篇博客探讨了一个背包问题的变种——多重背包问题。在给定物品数量限制的情况下,如何制定购买方案以最大化总价值。文章通过两种不同的代码实现(一维和二维DP数组)展示了如何解决这个问题,时间复杂度为O(nms)。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述

题意

一共有 n 种奖品,m 元现金

对于第 i 种奖品,其 价格 为 vi,价值 为 wi,数量 为si
制定一个购买 方案,使得该方案的总价值 最大

思路

物品个数为 n,总体积为m,初步识别是一个 背包问题

观察到每个物品有 数量限制,断定该题是 多重背包问题

时间复杂度:

O ( n m s ) O(nms) O(nms)

代码:

一维写法

#include<bits/stdc++.h>

using namespace std;

const int N = 6010;
int dp[N];
int n,m,v,w,s;

int main()
{
    cin>>n>>m;
    for(int i=0;i<n;++i)
    {
        cin>>v>>w>>s;
        for(int j=m;j>=0;--j)
        {
            for(int k=0;k<=s&&k*v<=j;++k)
            {
                dp[j]=max(dp[j],dp[j-k*v]+k*w);
            }
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

二维写法

#include<bits/stdc++.h>

using namespace std;

const int N = 510,M = 6000;
int dp[N][M];
int n,m;
int v,w,s;

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;++i)
    {
        cin>>v>>w>>s;
        for(int j=0;j<=m;++j)
        {
            for(int k=0;k<=s&&k*v<=j;++k)
            {
                dp[i][j]=max(dp[i][j],dp[i-1][j-k*v]+k*w);
            }
        }
    }
    cout<<dp[n][m]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值