大模型生成文本时的核心超参数解析
以下是控制大模型生成文本质量和风格的核心超参数及其作用机制:
1. 温度(Temperature)
- 作用:调整输出概率分布的平滑程度,控制生成文本的随机性与创造性。
- 低温度(0~0.5):输出更确定、保守,适合技术文档生成、数据总结等需要高准确性的场景。
- 高温度(0.7~1.0):输出更随机、多样,适合创意写作或探索性任务(如故事生成)。
2. Top-k
- 作用:限制模型生成时仅考虑概率最高的前k个候选词。
- 低k值(如10):生成内容更连贯但缺乏多样性,适合标准化回复(如客服问答)。
- 高k值(如100):增加多样性,但可能引入不相关词汇。
3. Top-p(核采样)
- 作用:基于累积概率动态筛选候选词,解决Top-k的固定候选数限制。
- 低p值(如0.7):聚焦高频词,生成内容更集中。
- 高p值(如0.95)