AI硬件的商用化进程

AI硬件早已在不知不觉中渗透到了我们身边,只是你没有察觉而已,也许你2024年左右买得手机比你用了3,4年的电脑AI算力还要强大。

在这里插入图片描述

关于NPU(神经网络处理器)在移动设备和PC端的商用化进程及具体产品信息整理如下:


一、NPU集成到手机/CPU的时间线与商用化进程

  1. 手机端

    • 2017年:华为麒麟970芯片首次集成自研NPU(寒武纪架构),应用于Mate 10系列手机,标志着NPU在手机端的商用化起点。
    • 2018-2020年:苹果A11/A12芯片引入“Neural Engine”,高通骁龙855/865系列通过Hexagon DSP集成AI加速单元,联发科Helio P90等芯片开始尝试AI协处理器。
    • 2020年后:NPU成为旗舰手机标配,华为、苹果、高通、联发科均推出专用NPU架构(如达芬奇、Tensor Core等),支持更复杂的本地AI任务。
  2. PC端

    • 2023-2024年:英特尔第14代酷睿Ultra(Meteor Lake)首次集成独立NPU模块,AMD锐龙8040系列加入NPU单元,标志着PC端NPU大规模商用的开端。
    • 2024年:AIPC概念普及,联想、惠普等厂商推出搭载CPU+GPU+NPU混合架构的设备,支持本地大模型推理。

二、主流厂商搭载NPU的CPU型号及发售时间

厂商代表性芯片型号NPU特性发售时间
华为麒麟970(寒武纪NPU)首款手机端NPU,1.92T算力2017年
麒麟990/9000(达芬奇NPU)自研架构,支持多核协同计算2019-2020年
高通骁龙8 Gen1/Gen2(Hexagon NPU)第七代AI引擎,集成张量加速单元2021-2022年
骁龙X Elite(Oryon CPU+NPU)45 TOPS算力,面向AIPC设计2024年
联发科天玑9000/9200(APU 4.0)多任务AI处理,支持混合精度计算2022-2023年
天玑6400(APU 5.0)优化边缘AI性能,适配轻量级大模型2025年

三、充分利用NPU加速大模型的软件及应用

  1. 手机端

    • 系统级框架:
      • 华为HiAI Engine(支持图像识别、语音助手等)
      • 高通SNPE(Snapdragon Neural Processing Engine)
      • 联发科NeuroPilot(适配TensorFlow Lite、PyTorch Mobile)
    • 应用案例:
      • 实时图像处理(如iPhone的Live Photos、华为Mate系列AI摄影)
      • 端侧大模型(如Google Gemini Nano、Meta Llama 3移动端)
  2. PC端

    • 开发工具:
      • Windows ML(支持NPU加速的本地推理框架)
      • Intel OpenVINO(优化NPU/GPU异构计算)
    • 大模型应用:
      • Stable Diffusion本地部署(通过DirectML或ONNX Runtime调用NPU)
      • 微软Copilot本地版(依赖NPU实现低延迟响应)

总结

NPU的大规模商用始于2017年手机端(华为麒麟970),2024年后在PC端加速普及。主流厂商的高端芯片已普遍集成专用NPU,软件生态逐步完善,覆盖从端侧图像处理到本地大模型推理的多样化场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值