AI硬件早已在不知不觉中渗透到了我们身边,只是你没有察觉而已,也许你2024年左右买得手机比你用了3,4年的电脑AI算力还要强大。
关于NPU(神经网络处理器)在移动设备和PC端的商用化进程及具体产品信息整理如下:
一、NPU集成到手机/CPU的时间线与商用化进程
-
手机端
- 2017年:华为麒麟970芯片首次集成自研NPU(寒武纪架构),应用于Mate 10系列手机,标志着NPU在手机端的商用化起点。
- 2018-2020年:苹果A11/A12芯片引入“Neural Engine”,高通骁龙855/865系列通过Hexagon DSP集成AI加速单元,联发科Helio P90等芯片开始尝试AI协处理器。
- 2020年后:NPU成为旗舰手机标配,华为、苹果、高通、联发科均推出专用NPU架构(如达芬奇、Tensor Core等),支持更复杂的本地AI任务。
-
PC端
- 2023-2024年:英特尔第14代酷睿Ultra(Meteor Lake)首次集成独立NPU模块,AMD锐龙8040系列加入NPU单元,标志着PC端NPU大规模商用的开端。
- 2024年:AIPC概念普及,联想、惠普等厂商推出搭载CPU+GPU+NPU混合架构的设备,支持本地大模型推理。
二、主流厂商搭载NPU的CPU型号及发售时间
厂商 | 代表性芯片型号 | NPU特性 | 发售时间 |
---|---|---|---|
华为 | 麒麟970(寒武纪NPU) | 首款手机端NPU,1.92T算力 | 2017年 |
麒麟990/9000(达芬奇NPU) | 自研架构,支持多核协同计算 | 2019-2020年 | |
高通 | 骁龙8 Gen1/Gen2(Hexagon NPU) | 第七代AI引擎,集成张量加速单元 | 2021-2022年 |
骁龙X Elite(Oryon CPU+NPU) | 45 TOPS算力,面向AIPC设计 | 2024年 | |
联发科 | 天玑9000/9200(APU 4.0) | 多任务AI处理,支持混合精度计算 | 2022-2023年 |
天玑6400(APU 5.0) | 优化边缘AI性能,适配轻量级大模型 | 2025年 |
三、充分利用NPU加速大模型的软件及应用
-
手机端
- 系统级框架:
- 华为HiAI Engine(支持图像识别、语音助手等)
- 高通SNPE(Snapdragon Neural Processing Engine)
- 联发科NeuroPilot(适配TensorFlow Lite、PyTorch Mobile)
- 应用案例:
- 实时图像处理(如iPhone的Live Photos、华为Mate系列AI摄影)
- 端侧大模型(如Google Gemini Nano、Meta Llama 3移动端)
- 系统级框架:
-
PC端
- 开发工具:
- Windows ML(支持NPU加速的本地推理框架)
- Intel OpenVINO(优化NPU/GPU异构计算)
- 大模型应用:
- Stable Diffusion本地部署(通过DirectML或ONNX Runtime调用NPU)
- 微软Copilot本地版(依赖NPU实现低延迟响应)
- 开发工具:
总结
NPU的大规模商用始于2017年手机端(华为麒麟970),2024年后在PC端加速普及。主流厂商的高端芯片已普遍集成专用NPU,软件生态逐步完善,覆盖从端侧图像处理到本地大模型推理的多样化场景。