高等数学期末总复习DAY17.第一类曲面积分、第二类曲面积分、高斯公式、

本文详细介绍了第一类和第二类曲面积分的概念及计算方法,并通过具体例题进行了解释。同时,还深入探讨了高斯公式,包括其适用条件和计算步骤,为读者提供了全面的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DAY17.

第一类曲面积分

对面积的曲面积分

形式: ∬ ∑ f ( x , y , z ) d s \iint_{\sum} f(x,y,z) d_s f(x,y,z)ds

例题

∬ ∑ d s \iint_{\sum} d_s ds 其中 ∑ = 2 − ( x 2 + y 2 ) \sum = 2 - (x^2+y^2) =2(x2+y2)在 xoy 平面上的部分

解:

∑ \sum 的区域画图为:

![在这里插入图片描述](https://img-blog.csdnimg.cn/20200619203310658.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pha3Nvbl9wb29y,size_16,color_FFFFFF,t_

总体为一个圆锥体,其中投影面为S { z = 0 x 2 + y 2 ⩽ 2 \begin{cases} z = 0 \\ x^2+y^2 \leqslant 2\end{cases} {z=0x2+y22

∬ ∑ d s \iint_{\sum} d_s ds

= ∬ D x o y 1 + 4 x 2 + 4 y 2 d x d y = \iint_{D_{xoy}} \sqrt{1+4x^2+4y^2}d_xd_y =Dxoy1+4x2+4y2 dxdy

= ∫ 0 2 π d θ ∫ 0 2 1 + 4 ρ 2 ρ d ρ = \int_0^{2\pi} d_{\theta} \int_0^{\sqrt 2 } \sqrt{1+4 \rho^{2}}\rho d_{\rho} =02πdθ02 1+4ρ2 ρdρ

= 2 π ∗ 1 8 ∫ 0 2 1 + 4 ρ 2 d 1 + 4 ρ 2 =2 \pi * \frac{1}{8} \int_0^{\sqrt 2} \sqrt{1+4 \rho^2}d_{1+4\rho^2} =2π8102 1+4ρ2 d1+4ρ2

= 13 3 π = \frac{13}{3}\pi =313π

第二类曲面积分

对坐标的曲面积分

此时的积分形式为: I = ∬ ∑ P ( x , y , z ) d y d z + Q ( x , y , z ) d x d z + R ( x , y , z ) d x d y I = \iint_{\sum} P(x,y,z)d_yd_z+Q(x,y,z)d_xd_z+R(x,y,z)d_xd_y I=P(x,y,z)dydz+Q(x,y,z)dxdz+R(x,y,z)dxdy

例题

I = ∬ ∑ x 2 y 2 z d x d y I = \iint_{\sum} x^{2} y^2 z d_xd_y I=x2y2zdxdy,其中 ∑ \sum x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2 =a^2 x2+y2+z2=a2的下半部分。

解:画出 ∑ \sum 的区域如图

在这里插入图片描述

D x o y = { x 2 + y 2 ⩽ a 2 z = 0 D_{xoy} = \begin{cases} x^2+y^2 \leqslant a^2 \\ z = 0 \end{cases} Dxoy={x2+y2a2z=0

I = ∬ ∑ x 2 y 2 z d x d y I = \iint_{\sum} x^{2} y^2 z d_xd_y I=x2y2zdxdy

= ∬ D x o y x 2 y 2 a 2 − x 2 − y 2 ( − d x d y ) =\iint_{D_{xoy}} x^2y^2 \sqrt{a^2-x^2-y^2}(-d_xd_y) =Dxoyx2y2a2x2y2 (dxdy)

为什么是 − d x d y -d_xd_y dxdy呢,因为下部分的法线和z轴的内积为负

= ∬ D x o y ( ρ cos ⁡ θ ) 2 ( ρ sin ⁡ θ ) 2 − a 2 − ρ 2 ρ d ρ =\iint_{D_{xoy}} (\rho \cos \theta)^2 (\rho \sin \theta)^2 -\sqrt{a^2 - \rho ^2} \rho d_{\rho} =Dxoy(ρcosθ)2(ρsinθ)2a2ρ2 ρdρ

下面的计算过程略

高斯公式

形式: ∭ Ω P d x d z + Q d y d z + R d x d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) \iiint_{\Omega} Pd_xd_z+Qd_yd_z+Rd_xd_y=\iiint_{\Omega}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}) ΩPdxdz+Qdydz+Rdxdy=Ω(xP+yQ+zR)

要使用高斯公式的前提是:

  1. 整个积分区域封闭
  2. 外侧的方向为正
  3. ∂ P ∂ x , ∂ Q ∂ y , ∂ R ∂ z \frac{\partial P}{\partial x},\frac{\partial Q}{\partial y},\frac{\partial R}{\partial z} xP,yQ,zR存在且连续
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值