斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
思路:相信都对这道入门级的动态规划题不陌生,题目已经给出了递推公式,以及初始条件,然后从前往后遍历,根据i-1和i-2的值推算即可。
代码(Python):
class Solution(object):
def fib(self, n):
if n <= 1: #若n为0或1,则返回0或1
return n
dp = [0] * (n+1) #创建一个dp数组
dp[0] = 0 #初始化 dp[0] = 0 dp[1] = 1
dp[1] = 1
for i in range(2,n+1):
dp[i] = dp[i-1] + dp[i-2] #递推公式
return dp[n]