题目链接
写点东西
KMP 算法的主要思想是利用模式串自身的特性来减少不必要的匹配过程,例如,在 aabaaf
这个模式串中,倘若此时文本串已经成功匹配了模式串的前四个元素即 aaba
,但是第五个元素没有匹配成功。此时,若按照一般的匹配算法来实现,应该以此时模式串中对应的第二个字符位置为文本串开始新一轮匹配的位置,即文本串开始匹配的元素索引 + 1。
事实上,不难看出,这一次的匹配是一定不可能成功的,即是一次不必要的匹配过程,因为在下一个要匹配的元素位置处,一定是文本串中的 b
与模式串中的 a
相比较,这显然是不可能匹配成功的。接着,文本串再以新的起点 b
来匹配模式串,显然又是一次无法成功的无效匹配。直到下一次从 b
后面的 a
开始的匹配才是有可能成功的匹配,即必要的匹配。
之所以会出现这样的问题,是因为在每一次的遍历过程中没有把能做的事情给做完,没有将这一次的遍历给收益最大化,正如常见的快慢指针一般,只有快指针一个指针的时候,就是没有将每次遍历收益最大化的一种情况。
那么在这里,能做的事情是什么呢?
就是前面所说的,利用自身的特性来减少不必要的匹配过程。在上面的例子中我们不难发现,在只知道在第几个元素处匹配失败,以及知道模式串的内容的情况下,我们不需要知道文本串整体是什么样就能够判断推断出,必然会有两次无效匹配过程。
所以,在这里我们需要做的或者说能做的就是提前推断出这样的情况,跳过这样的无效匹配过程。因为我们的推断只用到了模式串本身的信息,所以我们先把精力放到模式串上,找出其中的规律。
// 自己写的时候歪打正着注意到 j-- 也可以得到相同的结果
// 所以从头开始思考了一下整个过程 试着换了一种解读方式
const cur = 'aabaaf';
const t = cur.split(''); // 模式串数组
let next = [-1];
let j = -1; // 指向用于匹配的模式串<