畅通工程再续
Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!
最小生成树的模板题
prim解法
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0xffffff
using namespace std;
int x[110],y[110],vis[110],n;
double g[110][110];
double dis(int i,int j)
{
return sqrt(1.0*(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
void input()
{
int i,j;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&x[i],&y[i]);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
g[i][j]=g[j][i]=dis(i,j);
if(g[i][j]>1000||g[i][j]<10)
g[i][j]=g[j][i]=INF;
}
return ;
}
void prim()
{
int i,j,k,v;
double min,sum,mis[110];
memset(vis,0,sizeof(vis));
for(i=1;i<=n;i++)
mis[i]=g[1][i];
mis[1]=0;
vis[1]=1;;
for(v=1;v<n;v++)
{
min=INF;
for(i=1;i<=n;i++)
if(!vis[i]&&mis[i]<min)
{
min=mis[i];
k=i;
}
if(min==INF)
{
printf("oh!\n");
return ;
}
vis[k]=1;
for(i=1;i<=n;i++)
if(!vis[i]&&mis[i]>g[k][i])
mis[i]=g[k][i];
}
for(i=1;i<=n;i++)
{
if(!vis[i]&&mis[i]>g[k][i])
mis[i]=g[k][i];
}
sum=0;
for(i=2;i<=n;i++)
sum+=mis[i]*100;
printf("%.1lf\n",sum);
return ;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
input();
prim();
}
return 0;
}
kruskal解法
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int per[500];
int m,n,z;
struct node
{
double x,y;
}s[100010];
struct nod
{
int x1,y1;
double k;
}l[100010];
bool cmp(nod a,nod b)
{
return a.k-b.k<0;
}
void init()
{
for(int i=1;i<=n;i++)
per[i]=i;
}
int find(int x)
{
int r=x;
while(r!=per[r])
r=per[r];
int i=x,j;
while(i!=r)
{
j=per[i];
per[i]=r;
i=j;
}
return r;
}
bool join(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
per[fy]=fx;
return true;
}
return false;
}
int main()
{
int i,j,cnt,z;
double d,sum=0.0;
scanf("%d",&m);
while(m--)
{
scanf("%d",&n);
init();
for(i=0;i<n;i++)
scanf("%lf%lf",&s[i].x,&s[i].y);
z=0;
for(i=0;i<n-1;i++)
for(j=i+1;j<n;j++)
{
d=sqrt((s[i].x-s[j].x)*(s[i].x-s[j].x)+(s[i].y-s[j].y)*(s[i].y-s[j].y));
if(d>=10&&d<=1000)
{
l[z].x1=i+1;
l[z].y1=j+1;
l[z].k=d;
z++;
}
}
sort(l,l+z,cmp);
for(i=0,sum=0;i<z;i++)
{
if(join(l[i].x1,l[i].y1))
sum+=l[i].k;
}
for(i=1,cnt=0;i<=n;i++)
{
if(i==per[i])
cnt++;
if(cnt>1)
break;
}
if(cnt>1)
printf("oh!\n");
else
printf("%.1lf\n",sum*100);
}
return 0;
}