hdoj 1875 畅通工程再续

畅通工程再续

Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
 

Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
 

Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
 

Sample Input
  
  
2 2 10 10 20 20 3 1 1 2 2 1000 1000
 

Sample Output
  
  
1414.2 oh!
 
最小生成树的模板题
prim解法

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0xffffff
using namespace std;
int x[110],y[110],vis[110],n;
double g[110][110];
double dis(int i,int j)
{
	return sqrt(1.0*(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
void input()
{
		int i,j;
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
			scanf("%d%d",&x[i],&y[i]);
		for(i=1;i<=n;i++)
			for(j=1;j<=n;j++)
				{
					
					g[i][j]=g[j][i]=dis(i,j);
					if(g[i][j]>1000||g[i][j]<10)
						g[i][j]=g[j][i]=INF;
		}
	return ;
}
void prim()
{
	int i,j,k,v;
	double min,sum,mis[110];
	memset(vis,0,sizeof(vis));
	for(i=1;i<=n;i++)
		mis[i]=g[1][i];
		mis[1]=0;
		vis[1]=1;;
	for(v=1;v<n;v++)
	{
		min=INF;
		for(i=1;i<=n;i++)
			if(!vis[i]&&mis[i]<min)
			{
				min=mis[i];
				k=i;
		   }
		   if(min==INF)
		   {
		   	printf("oh!\n");
		   	return ; 
		   }
		   vis[k]=1;
		   for(i=1;i<=n;i++)
		      if(!vis[i]&&mis[i]>g[k][i])
		    	mis[i]=g[k][i];
	}
	for(i=1;i<=n;i++)
	{
		if(!vis[i]&&mis[i]>g[k][i])
			mis[i]=g[k][i];
	}
	sum=0;
	for(i=2;i<=n;i++)
		sum+=mis[i]*100;
	printf("%.1lf\n",sum);	
	return ;	
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		input();
		prim();
	}
	return 0;
}

kruskal解法

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int per[500];
int m,n,z;
struct node
{
	double x,y;
}s[100010];
struct nod
{
	int x1,y1;
	double k;
}l[100010];	 
bool cmp(nod a,nod b)
{
	return a.k-b.k<0;
}
void init()
{
	for(int i=1;i<=n;i++)
		per[i]=i; 
}
int find(int x)
{
	int r=x;
	while(r!=per[r])
		r=per[r];
		int i=x,j;
		while(i!=r)
		{
			j=per[i];
			per[i]=r;
			i=j;
		}
	return r;
}  
bool join(int x,int y)
{
	int fx=find(x);
	int fy=find(y);
	if(fx!=fy)
	{
		per[fy]=fx;
		return true;
	}
	return false;
}
int main()
{
	int i,j,cnt,z;
	double d,sum=0.0;
	scanf("%d",&m);
	while(m--)
	{
		scanf("%d",&n);
		init();
		for(i=0;i<n;i++)
			scanf("%lf%lf",&s[i].x,&s[i].y);
			z=0;
		for(i=0;i<n-1;i++)
			for(j=i+1;j<n;j++)
				{
					d=sqrt((s[i].x-s[j].x)*(s[i].x-s[j].x)+(s[i].y-s[j].y)*(s[i].y-s[j].y));
					if(d>=10&&d<=1000)
					{
						l[z].x1=i+1;
						l[z].y1=j+1;
						l[z].k=d;
						z++;
					}	
				}
		 sort(l,l+z,cmp);
		 for(i=0,sum=0;i<z;i++)
		{
		 	if(join(l[i].x1,l[i].y1))
			 	sum+=l[i].k;	
		}
		for(i=1,cnt=0;i<=n;i++)
			{
 				if(i==per[i])
				cnt++;
				if(cnt>1)
					break;
			}
		if(cnt>1)
			printf("oh!\n");
		else
			printf("%.1lf\n",sum*100);	 
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值