高斯-切比雪夫 2 型多项式精度区间的正交规则 [-1,+1]:完整源码及应用
高斯-切比雪夫 2 型多项式(Gauss-Chebyshev type II polynomial)是一类常见的正交多项式,其在科学计算领域中得到了广泛应用。其中,对[-1,+1]区间上的Gauss-Chebyshev type II polynomial的正交规则进行研究,可以有效提升多项式的求解精度。
本文将介绍如何利用C++实现[-1,+1]区间上的高斯-切比雪夫 2 型多项式精度区间的正交规则,并给出完整的源码及应用示例。
首先,我们需要了解该多项式的定义式:
T_n(x) = cos(n * acos(x)), n ≥ 0
其中,“acos”表示反余弦函数,即cos(x)的反函数。根据定义式,我们可以推导出该多项式的一些性质,如其正交性、归一性、三项递推关系等。
下面就是完整的C++源码,其中包含了多项式的计算函数、求解多项式系数函数、多项式正交规则的计算函数等:
#include