高斯-切比雪夫 2 型多项式精度区间的正交规则 [-1,+1]:完整源码及应用

132 篇文章 5 订阅 ¥59.90 ¥99.00
本文详述了如何用C++实现[-1,+1]区间上高斯-切比雪夫2型多项式的正交规则,包括多项式定义、性质、计算函数和应用示例,适用于提高科学计算的精度。" 103064984,9120228,Python编程:贪吃蛇小游戏实现详解,"['Python', '游戏开发', 'pygame']
摘要由CSDN通过智能技术生成

高斯-切比雪夫 2 型多项式精度区间的正交规则 [-1,+1]:完整源码及应用

高斯-切比雪夫 2 型多项式(Gauss-Chebyshev type II polynomial)是一类常见的正交多项式,其在科学计算领域中得到了广泛应用。其中,对[-1,+1]区间上的Gauss-Chebyshev type II polynomial的正交规则进行研究,可以有效提升多项式的求解精度。

本文将介绍如何利用C++实现[-1,+1]区间上的高斯-切比雪夫 2 型多项式精度区间的正交规则,并给出完整的源码及应用示例。

首先,我们需要了解该多项式的定义式:

T_n(x) = cos(n * acos(x)), n ≥ 0

其中,“acos”表示反余弦函数,即cos(x)的反函数。根据定义式,我们可以推导出该多项式的一些性质,如其正交性、归一性、三项递推关系等。

下面就是完整的C++源码,其中包含了多项式的计算函数、求解多项式系数函数、多项式正交规则的计算函数等:

#include 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值