三维空间刚体运动 三维空间中的刚体运动涉及到刚体在空间中的位置(translation)和方向(orientation)的变化。在机器视觉和机器人领域,尤其是在同时定位与地图构建(SLAM,Simultaneous Localization and Mapping)的应用中,精确地描述和计算这种运动是至关重要的。下面是对三维空间中刚体运动的详细介绍,特别是在SLAM的背景下。位姿描述了一个刚体在三维空间中的位置和方向。通常,位姿由一个三维向量和一个旋转矩阵(或四元数)来表t{t}t(通常是x,y,zx, y, zx,y,z
归并排序(附C++实现及验证) 归并排序的核心思想是将一个大数组分割成两个小数组去解决。然后,这两个小数组排序后再将它们合并起来。这个过程中的基本操作是比较两个数组的最前面的数,将较小的数先取出,放到输出数组中。通过递归的方式不断将数组分解,直到每个小数组只有一个元素,认为每个小数组都已经有序,再将它们合并成一个有序的数组。
双目三维重建———基本概念介绍 双目相机系统包括两个同型号的相机,它们被固定在一定的距离(基线距离)上,且相机的光轴平行对齐。这种布局使得每个相机捕获到的场景图像存在视差,即同一物体在两个相机视图中的位置存在水平位移。利用这种视差,可以计算物体到相机的距离。双目相机系统通过模拟人眼的立体视觉来重建三维空间,广泛应用于自动驾驶、机器人导航和虚拟现实等领域。掌握双目视觉的基本原理和技术可以有效地解决许多实际问题。希望这篇介绍能帮助你理解并应用双目相机生成三维点云的技术。
普通相机模型(针孔相机模型)——从世界坐标系到图像坐标系 uv1KR∣tXYZ1uv1KR∣tXYZ1这里,( \mathbf{K} ) 是内参矩阵(包含焦距和图像中心坐标),[ \mathbf{R} | \mathbf{t} ] 是外参矩阵(包含旋转矩阵和平移向量)。这种表示形式完整地描述了从三维世界到二维图像的转换过程。
快速排序原理与实现 最优时间复杂度OnlognOnlogn平均时间复杂度OnlognOnlogn最坏时间复杂度On2O(n^2)On2快速排序时间复杂度并不稳定,但数据量较大时我们可能需要一种更为稳定的排序算法——比如归并排序。
动态规划(原理及C++实现) 动态规划 动态规划是运筹学的一个分支,是解决多阶段决策过程最优化的一种数学方法,主要用于以时间或低于划分阶段的动态过程最优化。在计算机领域也多有应用,最广为人知的应该是动态规划解01背包问题。例题 给定n个物料的权重和值,将这些物料放在容量为W的背包中,以在背包中获得最大的总价值。解题策略(一) 递归解题是一种很好的思路,只需要借助简单的逻辑就能实现这个复杂的功能。递归代码#include <iostream>using namespace std;int max(in
RANSAC算法(原理及代码实现+迭代次数参数自适应) 前言 随机样本一致性 (RANSAC) 是一种迭代方法,用于从一组包含异常值的观察数据中估计数学模型的参数,此时异常值不会对估计值产生影响。简言之,RANSAC是一种滤除噪声的常用算法。算法流程...
SVD奇异值分解(理论与C++实现) 目录前言前言 奇异值分解(singular value decomposition,以下简称SVD)是线性代数中一种重要的矩阵分解。SVD将矩阵分解为奇异向量(singular vector)和奇异值(singular value)。SVD将矩阵AAA分解成三个矩阵的乘积A=UDVT A = UDV^{T}A=UDVT 设AAA是m×nm\times nm×n的矩阵,则UUU是一个m×mm\times mm×m的矩阵,DDD是一个m×nm\times nm×n的矩阵VVV是一个n×nn\time
激光能量分布仿真分析(附Python和matlab实现代码) 前言 初写这个程序时,用的是matlab。然而离开学校以后,价格高昂的matlab软件不再能使用。因此,用Python补充这些程序。如果有读者想要讨论电磁场理论相关的物理学或者编程以及数学,我的邮箱是707101557@qq.com。程序 下面两个程序用简单的方法实现仿真,算法的时间复杂度极高,且没有在编程技巧上进行改进,因此需要运行较长时间。在最后,我改进了变成技巧,加速了程序的运行...
根据前序遍历、中序遍历还原二叉树 已知前序遍历和中序遍历如何构造二叉树 设有前序遍历(根->左->右):3,9,20,15,7 中序遍历(左->根->右):9, 3, 15, 20, 7算法设计 1. 前序遍历的第一点为根节点 2. 在中序遍历中,根节点的左边为其左子树,右边为其右子树 根据以上特性,设置算法流程如下:确认当前节点、左子树、右子树在左子树中递归在右子树中递归功能代码及测试代码#include <iostream>#include <vector
windows下动态库的生成与调用 windows下动态库的生成与调用前言DLL简介创建DLL调用DLL作者语参考文献前言 如果想要设计更好的软件,深入理解动态库是十分有必要的,因为动态库与大型C++软件的模块化息息相关。本文主要讲解什么是DLL,以及如何用visual studio生成自己的动态库,并调用自己生成的动态库。本文所介绍的也仅仅是windows下的动态链接库。DLL简介 在windows系统上,dll文件和exe文件实际上是一个概念,他们都是有PE格式的二进制文件,不同之处在于PE文件头部中有个符号位表示该文件是ex
OpenCV+cmake 生成vs工程 和OpenCV动态库(附视频链接) 目录前言学前准备编译OpenCV下载相关库通过CMake生成相关工程下回预告对学者的建议前言 本文是OpenCV学习系列开篇之作,旨在为OpenCV的初学者指明学习的道路,并以vs2019+opencv4.5.1的环境搭建为例,介绍OpenCV的编译过程。学前准备 对于编程功底较好的同学,建议通过OpenCV源码进行学习;对于刚学习编程不久的同学,可以先通过一些教材深入了解OpenCV。笔者推荐的教材是安德里安的学习OpenCV3。编译OpenCV 编译OpenCV的步骤如下,1.下载相
从博弈论的角度出发,解密股民与机构在股票市场中的博弈 前言 博弈论旨在分析游戏中个体的预测行为和实际行为,并研究它们的优化策略。今年的A股市场可谓跌宕起伏,这种股市情形是很容易让股民们亏钱、机构盈利的。怎么证明过程呢?这个过程可能有些抽象,因此我们先用一个故事来让大家了解这个过程的全貌。正面 你在一家咖啡厅遇到了迪丽热巴,她要和你玩这样一个游戏:你们两人各持一枚硬币,如果同时出正面你赢走3个币,同时出反面你赢走1个币;如果是一正一反,迪丽热巴赢走2个币。还未学过博弈论的你,很可能认为你们两个人的收益期望应当是相当的。你会认为在随机情况下,都出正面的概
QVector与std::vector对比 前言 Qt与STL都提供了诸如QVector之类的容器,在软件开发的过程中,应该使用哪一种容器更为合理呢?笔者认为这取决于你希望如何优化你的软件;如果你在意的是效率,笔者建议你使用vector。实验 vector和QVector都是通过复制构造函数添加对象,但当你执行push_back时,你会发现,vector只调用了一次复制构造函数,而QVector调用了两次复制构造函数。#include <iostream>#include <QtCore/QVector>u