吴恩达机器学习---python版学习笔记(exe1 线性回归)

这篇博客介绍了如何使用Python实现吴恩达机器学习课程中的线性回归,包括一元线性回归和多元线性回归。通过引入Numpy、Pandas和Matplotlib等第三方库,作者展示了数据读取、预处理和可视化的过程,并详细解释了代价函数、梯度下降算法以及正规方程的实现。最后,通过实例展示了如何生成拟合直线并进行预测。
摘要由CSDN通过智能技术生成

吴恩达机器学习课程是机器学习领域的知名课程,对于入门机器学习起着非常关键的作用。但是由于年代问题,课程中使用的是Octave,即matlab框架,难以适用现今流行的python AI语言。特此,笔者在网上找到了python版的作业,来与各位分享,同时纪录自己学习过程,共勉。
------------------------------------------------------------------------------------------------
python版吴恩达机器学习资料(仅供学习和参考,侵权请联系删除)
------------------------------------------------------------------------------------------------

第三方库介绍

在这里插入图片描述
exe1中设计的三个第三方库,分别是:

  • Numpy:
    由于机器学习算法在数据处理过程中大都涉及线性代数的知识,需要用到矩阵操作,Python本身没有处理矩阵的数据类型,因此需要使用附加的函数库。其中NumPy函数库是Python开发环境的一个独立模块,是Python的一种开源的数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值