讲人话的计算机视觉和深度学习(一)线性分类器

本文介绍了计算机视觉中的图像分类任务,包括其难点、早期基于规则的方法和现代数据驱动的图像分类范式。重点讨论了线性分类器,解释了图像表示、模型选择、决策过程,并以CIFAR10数据集为例进行说明。同时,提到了常见的任务评价指标如TOP1和TOP5指标,并预告了后续的损失函数设计和优化算法等内容。
摘要由CSDN通过智能技术生成

前言

在这里插入图片描述
计算机视觉是模拟人的思维对图像甚至是音频进行处理的学科,从由无数个像素组成的图片到人能够理解的解释,这个过程是计算机视觉所要解决的内容。
在这里插入图片描述
目前而言最有效的方法为卷积神经网络(CNN)
在这里插入图片描述
在imagenet数据集上,特定的数据集中,CNN的正确率已经高于人类。
因此学习计算机视觉将是入门人工智能的关键一步,本系列文章整理于B站北邮鲁鹏老师的视频,点这里前往视频,仅供学习参考使用。

一、图像分类任务介绍

在这里插入图片描述

1.什么是图像分类任务?

在这里插入图片描述
图像分类是目标检测,图像分割的基础。

2.图像分类的难点

存在着视角,光照,遮挡,小目标,背景杂波,运动模糊等等一系列问题,每一个问题都是一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值