题目
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
链接:https://leetcode.com/problems/triangle/
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
Example:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
思路及代码
DP
- path[i][j] = triangle[i][j] + min(path[i-1][j], path[i-1][j-1])
class Solution:
def minimumTotal(self, triangle: List[List[int]]) -> int:
n = len(triangle)
path = [[0 for i in range(n)] for j in range(n)]
path[0][0] = triangle[0][0]
for i in range(1, n):
for j in range(i+1):
if j != i and j != 0:
path[i][j] = triangle[i][j] + min(path[i-1][j], path[i-1][j-1])
elif j == 0:
path[i][j] = triangle[i][j] + path[i-1][j]
else: # j == i
path[i][j] = triangle[i][j] + path[i-1][j-1]
return min(path[n-1])
复杂度
T =
O
(
n
2
)
O(n^2)
O(n2)
S =
O
(
n
2
)
O(n^2)
O(n2)
注意点
多维list初始化
# 只能用👇
l = [[0 for i in range(n)] for j in range(n)]
# 不能用↓,否则改变某行某值时,别的会跟着变!!!
l = [[0]*n]*n