证明 logX < X 对所有的 X > 0成立 理解mark

最近在看书增长见识,所以可能最近会更一些自己对一些问题的理解。

题目: 证明: logX < X 对所有的 X > 0成立。(计算机中默认以2为底)

对于这个问题,百度了很多种解法,有先分析然后判断趋势然后给出结论的,但是这是个证明题是吧。所以我就没有放弃的继续百度了一下,最后比较中意这个数学归纳法。

1、首先我是用画图判断趋势来求证的:

底都是2哈 我这也不知道怎么写能表示出来 先不写2了
logX < X ( X >0,把X除过去)
= logX / log2^X < 1(运用定理logA底B=logC底B/logC底A)
= log2^X底X < log2^X底2的X次方
根据 log 的图像 此时底数为 2>1 log 函数为正且递增
消掉 log2^X底
所以= X < 2^X
在象限中画图 当 X >0时,始终成立的,所以证明完毕。
思路哈,略显单调。

2、第二种就是Mark Allen Weiss这位大师的数学归纳法了
证明:
首先,当0 < X ≤ 1 时,因为X = 1时,log1 = 0 < 1。X = 1/2时, logX = -1 < 1/2,logX < X 显然成立。总之X < 1时,logX为负数,因为X>0,所以logX明显小于X。

然后,当1 < X ≤ 2 时。因为log2 = 1 < 2,且X < 2 时logX < 1。

接下来要考虑的是剩下的区间X>

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值