【c++动态规划】最长上升序列

问题 B: 最长上升序列

时间限制: 1 Sec  内存限制: 128 MB

题目描述

       设有由n个不相同的整数组成的数列,记为:b(1)、b(2)、……、b(n)且b(i)<>b(j)  (i<>j),若存在i1<i2<i3< … < ie 且有b(i1)<b(i2)< … <b(ie)则称为长度为e的上升序列。程序要求,当原数列出之后,求出最长的上升序列。

       例如13,7,9,16,38,24,37,18,44,19,21,22,63,15。例中13,16,18,19,21,22,63就是一个长度为7的上升序列,同时也有7 ,9,16,18,19,21,22,63长度为8的上升序列。

输入

一行,若干个整型数(长度不超过1000)。

输出

输出最长的上升序列

样例输入

13 7 9 16 38 24 37 18 44 19 21 22 63 15

样例输出

8

【参考书目:信息学奥赛一本通】

自己对书上的程序的注释进行了补充,如果想了解详细思路可以看书的第329页

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n=0,i=0,b[10][5000];
	//b[1][i]储存这个数是多少,
	//b[2][i]储存从i位置到n的最长不下降序列长度,
	//b[3][i]储存从i位置开始最长不下降序列的下一个位置,如果=0则表示后面没有连接项 
	while(cin>>b[1][++i])
	{
		n++;//总数 
		b[2][i]=1;b[3][i]=0;
	}
	for(i=n-1;i>=1;i--)//从倒数第二个数找 (子序列开头) 
	{
		int l=0,k=0;//长度,位置 (每次新找一个数作为子序列的开头时要清零,第二个if才能执行) 
		for(int j=i+1;j<=n;j++)
		{
			if((b[1][j]>b[1][i])&&(b[2][j]>l))//如果下一个数>上一个数,且长度创新高 
			{
				l=b[2][j];k=j;//更新 
			}
			if(l>0)//状态转移
			{
				b[2][i]=l+1;//i位置到n的最长不下降序列长度+1,因为之前连上一个数了 
				b[3][i]=k;//转移到下个数的位置 
			}
		}
	}
	int k=1;
	for(int j=1;j<=n;j++)//把每个数扫一遍,看以哪个数开头的上升序列最长 
	{
		if(b[2][j]>b[2][k])	k=j;
	}
	cout<<b[2][k]<<endl;
	return 0;//完结撒花 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值