问题 B: 最长上升序列
时间限制: 1 Sec 内存限制: 128 MB
题目描述
设有由n个不相同的整数组成的数列,记为:b(1)、b(2)、……、b(n)且b(i)<>b(j) (i<>j),若存在i1<i2<i3< … < ie 且有b(i1)<b(i2)< … <b(ie)则称为长度为e的上升序列。程序要求,当原数列出之后,求出最长的上升序列。
例如13,7,9,16,38,24,37,18,44,19,21,22,63,15。例中13,16,18,19,21,22,63就是一个长度为7的上升序列,同时也有7 ,9,16,18,19,21,22,63长度为8的上升序列。
输入
一行,若干个整型数(长度不超过1000)。
输出
输出最长的上升序列
样例输入
13 7 9 16 38 24 37 18 44 19 21 22 63 15
样例输出
8
【参考书目:信息学奥赛一本通】
自己对书上的程序的注释进行了补充,如果想了解详细思路可以看书的第329页
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n=0,i=0,b[10][5000];
//b[1][i]储存这个数是多少,
//b[2][i]储存从i位置到n的最长不下降序列长度,
//b[3][i]储存从i位置开始最长不下降序列的下一个位置,如果=0则表示后面没有连接项
while(cin>>b[1][++i])
{
n++;//总数
b[2][i]=1;b[3][i]=0;
}
for(i=n-1;i>=1;i--)//从倒数第二个数找 (子序列开头)
{
int l=0,k=0;//长度,位置 (每次新找一个数作为子序列的开头时要清零,第二个if才能执行)
for(int j=i+1;j<=n;j++)
{
if((b[1][j]>b[1][i])&&(b[2][j]>l))//如果下一个数>上一个数,且长度创新高
{
l=b[2][j];k=j;//更新
}
if(l>0)//状态转移
{
b[2][i]=l+1;//i位置到n的最长不下降序列长度+1,因为之前连上一个数了
b[3][i]=k;//转移到下个数的位置
}
}
}
int k=1;
for(int j=1;j<=n;j++)//把每个数扫一遍,看以哪个数开头的上升序列最长
{
if(b[2][j]>b[2][k]) k=j;
}
cout<<b[2][k]<<endl;
return 0;//完结撒花
}