AOV-网和AOE-网

本文详细介绍了AOV和AOE网络的概念及其应用。AOV网络用于研究活动的先后次序,通过拓扑排序确定活动顺序;AOE网络则用于估算工程完成时间,找出关键路径。文章还阐述了关键路径的计算方法,包括最早开始时间和最迟开始时间的计算公式。
摘要由CSDN通过智能技术生成

定义

  • AOV-网 Activity On Vertex Network:用顶点表示活动,用弧表示活动间的优先关系的有向图,用来研究完成活动的先后次序,即进行拓扑排序
  • AOE-网 Activity On Edge:顶点表示时间结点,弧表示活动,权表示活动持续的时间,用来估算工程的完成时间,即求关键路径的操作

拓扑排序

  1. 在有向图中选一个没有前驱的顶点并输出之
  2. 从图中删除该顶点和所有以它为尾的弧
  3. 重复上述两步直到全部顶点均已输出,或当前图中不存在无前驱的顶点(这种情况说明有环)为止

关键路径

  • 每个事件表示在它之前的活动已经完成,在它之后的活动可以开始
  • 整个工程只有一个入度为零的点(源点)和一个出度为零的点(汇点
  • 由于活动可以并行进行,完成工程最短时间是从源点到汇点的最长路径(关键路径)的长度
  • e ( i ) e(i) e(i):活动 a i a_i ai的最开始时间
  • l ( i ) l(i) l(i):在不推迟整个工程完成的前提下,活动 a i a_i ai的最开始时间
  • 关键活动 e ( i ) = l ( i ) e(i)=l(i) e(i)=l(i),关键路径的所有活动都是关键活动
  • v e ( j ) ve(j) ve(j):时间结点最发生时间
  • v l ( j ) vl(j) vl(j):时间结点最发生时间
  • 活动 a i a_i ai由弧 &lt; j , k &gt; &lt;j,k&gt; <j,k>表示,其持续时间记为 d u t ( &lt; j , k &gt; ) dut(&lt;j,k&gt;) dut(<j,k>)
  • e ( i ) = v e ( j ) e(i)=ve(j) e(i)=ve(j)
  • l ( i ) = v l ( k ) − d u t ( &lt; j , k &gt; ) l(i)=vl(k)-dut(&lt;j,k&gt;) l(i)=vl(k)dut(<j,k>)
  • v e ( j ) = M a x { v e ( i ) + d u t ( &lt; i , j &gt; ) } ve(j)=Max\{ve(i)+dut(&lt;i,j&gt;)\} ve(j)=Max{ve(i)+dut(<i,j>)}
  • v l ( j ) = M i n { v l ( j ) − d u t ( &lt; i , j &gt; ) } vl(j)=Min\{vl(j)-dut(&lt;i,j&gt;)\} vl(j)=Min{vl(j)dut(<i,j>)}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值