鲁班号导读正式上线。移步“鲁班秘笈”,查阅更多内容。
大型语言模型 (LLM) 已在各种软件工程和编码任务中展现出卓越的能力。然而,它们在代码和编译器优化领域的应用仍未得到充分探索。训练LLM需要大量资源,需要大量的 GPU时间和大量的数据收集。Meta语言模型编译器 (LLM Compiler),这是一套专为代码优化任务设计的强大、公开可用的预训练模型。
LLM Compiler建立在Code Llama的基础上,增强了对编译器中间表示 (IR)、汇编语言和优化技术的理解。该模型已在546B的LVM-IR和汇编代码的庞大语料库上进行了训练,并经过了指令微调。
LLM Compiler是根据定制的商业许可发布的,允许广泛重用。除了7B和 13B的规模,还有该模型的微调版本,展示了其在优化代码大小和从 x86_64和ARM汇编反编译回LLVM-IR的增强功能。
Code Llama
2024年1月29日发布代码Llama 70B是一个可以使用文本提示生成代码的大型语言模型。Code Llama是最先进的代码任务公开可用LLMs,可以使得当前开发人员的工作流程更快、更高效,并降低学习编码的门槛。Code Llama可以被用来作业以及教学。
Code Llama是Llama 2的代码专用版本,它是通过在特定的代码数据集进一步训练Llama 2而得到。它可以从代码和自然语言提示生成代码和关于代码的自然语言,例如,“写一个斐波那契数列的函数”。它还可用于代码的补全和调试,支持当今使用的许多最流行的语言,包括Python、C++、Java、PHP、Typescript (Javascript)、C#和Bash。
Code Llama提供多达100,000 个上下文Token。所有的模型都基于16,000个Token序列进行训练,在多达100,000个Token输入中显示出明显的改进。
Meta还微调Code Llama的另外两个变体:Code Llama-Python和Code Llama-Instruc